Page 153 - MSAM-4-2
P. 153

Materials Science in Additive Manufacturing                    Bi-modal powder spreading behavior of ceramics



            37.  Lee Y, Nandwana P, Simunovic S. Powder spreading,   2024;19:100632.
               densification, and part deformation in binder jetting additive      doi: 10.1016/J.OCERAM.2024.100632
               manufacturing. Prog Addit Manuf. 2022;7(1):111-125.
                                                               48.  Oropeza D, Penny RW, Gilbert D, Hart AJ. Mechanized
               doi: 10.1007/S40964-021-00214-1/FIGURES/13
                                                                  spreading of ceramic powder layers for additive
            38.  Chen H, Wei Q, Wen S, Li Z, Shi Y. Flow behavior of powder   manufacturing characterized by transmission x-ray imaging:
               particles in layering process of selective laser melting:   Influence of powder feedstock and spreading parameters on
               Numerical modeling and experimental verification based   powder layer density. Powder Technol. 2022;398:117053.
               on discrete element method.  Int J Mach Tools Manuf.      doi: 10.1016/J.POWTEC.2021.117053
               2017;123:146-159.
                                                               49.  Capozzi  LC,  Sivo  A,  Bassini  E.  Powder  spreading  and
               doi: 10.1016/J.IJMACHTOOLS.2017.08.004
                                                                  spreadability in the additive manufacturing of metallic
            39.  Oh JW, Nahm S, Kim B, Choi H. Anisotropy in green body   materials: A  critical review.  J  Mater Process Technol.
               bending strength due to additive direction in the binder-  2022;308:117706.
               jetting  additive  manufacturing  process.  J  Korean Instit
               Metals Mater. 2019;57(4):227-235.                  doi: 10.1016/J.JMATPROTEC.2022.117706
                                                               50.  Zinatlou Ajabshir S, Sofia D, Hare C, Barletta D, Poletto M.
               doi: 10.3365/KJMM.2019.57.4.227
                                                                  Experimental characterisation of the spreading of polymeric
            40.  Inkley CG, Lawrence JE, Crane NB. Impact of controlled   powders in powder bed fusion additive manufacturing
               prewetting on part formation in binder jet additive   process at changing temperature conditions.  Adv  Powder
               manufacturing. Addit Manuf. 2023;72:103619.        Technol. 2024;35(4):104412.
               doi: 10.1016/J.ADDMA.2023.103619                   doi: 10.1016/J.APT.2024.104412
            41.  Inkley C, Martin D, Clark B, Crane N. Controlled Wetting of   51.  Haydari Z, Talebi F, Mehrabi M,  et al. Insights into the
               Spread Powder and its Impact on Line Formation in Binder   assessment of spreadability of stainless steel powders in
               Jetting. In:  Proceedings of ASME 2022  17   International   additive manufacturing. Powder Technol. 2024;439:119667.
                                               th
               Manufacturing Science and Engineering Conference, MSEC
               2022; 2022. p. 1.                                  doi: 10.1016/J.POWTEC.2024.119667
                                                               52.  Cheng M, Tang J Bin, Zhao YH, et al. Validation of powder
               doi: 10.1115/MSEC2022-85603
                                                                  layering simulation via packing density measurement for
            42.  Nan W, Pasha M, Ghadiri M. Numerical simulation of particle   laser-based powder bed fusion. IOP Conf Ser Mater Sci Eng.
               flow and segregation during roller spreading process in   2023;1296(1):012020.
               additive manufacturing. Powder Technol. 2020;364:811-821.
                                                                  doi: 10.1088/1757-899X/1296/1/012020
               doi: 10.1016/J.POWTEC.2019.12.023
                                                               53.  Tan P, Zhou M, Tang C, Su Y, Qi HJ, Zhou K. Multiphysics
            43.  Phua A, Doblin C, Owen P, Davies CHJ, Delaney GW. The   modelling of powder bed fusion for polymers. Virtual Phys
               effect of recoater geometry and speed on granular convection   Prototyp. 2023;18(1):e2257191.
               and size segregation in powder bed fusion. Powder Technol.
               2021;394:632-644.                                  doi: 10.1080/17452759.2023.2257191
                                                               54.  Salehi H, Cummins J, Gallino E, et al. Optimising spread-
               doi: 10.1016/J.POWTEC.2021.08.058
                                                                  layer quality in powder additive manufacturing: Assessing
            44.  Miao G, Du W, Pei Z, Ma C. A literature review on powder   packing  fraction  and  segregation  tendency.  Processes.
               spreading in additive manufacturing.  Addit Manuf.   2023;11(8):2276.
               2022;58:103029.
                                                                  doi: 10.3390/PR11082276
               doi: 10.1016/J.ADDMA.2022.103029
                                                               55.  Li H, Elsayed H, Colombo P. Effect of particle size distribution
            45.  Bierwisch C. DEM Powder Spreading and SPH Powder Melting   and printing parameters on alumina ceramics prepared by
               Models for Additive Manufacturing Process Simulations;   Additive Manufacturing. Ceram Int. 2024;50(4):6340-6348.
               2019. Available from: https://publica.fraunhofer.de/handle/
               publica/406662 [Last accessed on 2025 Jan 29].     doi: 10.1016/J.CERAMINT.2023.11.365
                                                               56.  Marinucci F, Aversa A, Manfredi D, Lombardi M, Fino P.
            46.  Haeria S, Wangb Y, Ghitab O, Sunc J. Discrete element
               simulation and experimental study of powder spreading   Evaluation of a laboratory-scale gas-atomized AlSi10Mg
                                                                  powder and a commercial-grade counterpart for laser
               process  in  additive  manufacturing. Powder Technol.
               2016;306:45-54.                                    powder bed fusion processing. Materials. 2022;15(21):7565.
                                                                  doi: 10.3390/MA15217565
            47.  Zocca A, Günster J. Towards a debinding-free additive
               manufacturing of ceramics: A  development perspective   57.  Morcos  P,  Shoukr  D,  Sundermann  T,  et  al.  An  all-
               of water-based LSD and LIS technologies.  Open Ceram.   encompassing study on the joint effect of powder feedstock


            Volume 4 Issue 2 (2025)                         14                         doi: 10.36922/MSAM02510016
   148   149   150   151   152   153   154   155   156   157   158