Page 79 - OR-1-2
P. 79

66.  Daneman R, Prat A. The blood-brain barrier.  Cold  Spring   79.  Takebe  T,  Sekine  K,  Enomura  M,  et al.  Vascularized  and
                Harb Perspect Biol. 2015;7(1):a020412.           functional human liver from an iPSC-derived organ bud
                                                                 transplant. Nature. 2013;499(7459):481-484.
                doi: 10.1101/cshperspect.a020412
                                                                 doi: 10.1038/nature12271
            67.  Hladky SB, Barrand MA. Mechanisms of fluid movement
                into, through and out of the brain: evaluation of the evidence.   80.  Watson CL, Mahe MM, Munera J, et al. An in vivo model of
                Fluids Barriers CNS. 2014;11:26.                 human small intestine using pluripotent stem cells. Nat Med.
                                                                 2014;20(11):1310-1314.
                doi: 10.1186/2045-8118-11-26
                                                                 doi: 10.1038/nm.3737
            68.  Iadecola C. The neurovascular unit coming of age: A journey
                through neurovascular coupling in health and disease.   81.  Van  den  Berg  CW,  Ritsma  L,  Avramut  MC,  et  al.  Renal
                Neuron. 2017;96(1):17-42.                        subcapsular transplantation of PSC-derived kidney
                                                                 organoids  induces  neo-vasculogenesis  and  significant
                doi: 10.1016/j.neuron.2017.07.030                glomerular and tubular maturation in vivo. Stem Cell Reports.
            69.  Varatharaj A, Galea I. The blood-brain barrier in systemic   2018;10(3):751-765.
                inflammation. Brain Behav Immun. 2017;60:1-12.     doi: 10.1016/j.stemcr.2018.01.041
                doi: 10.1016/j.bbi.2016.03.010                82.  Dye BR, Dedhia PH, Miller AJ, et al. A bioengineered niche
            70.  Zlokovic BV. Neurovascular pathways to neurodegeneration   promotes in vivo engraftment and maturation of pluripotent
                in Alzheimer’s disease and other disorders. Nat Rev Neurosci.   stem cell derived human lung organoids. Elife. 2016;5:e19732.
                2011;12(12):723-738.                             doi: 10.7554/eLife.19732
                doi: 10.1038/nrn3114                          83.  Shi Y, Sun L, Wang M, et al. Vascularized human cortical
            71.  Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte   organoids (vOrganoids) model cortical development in vivo.
                trafficking to the CNS: Anatomical sites and molecular   PLoS Biol. 2020;18(5):e3000705.
                mechanisms. Trends Immunol. 2005;26(9):485-495.     doi: 10.1371/journal.pbio.3000705
                doi: 10.1016/j.it.2005.07.004                 84.  Worsdorfer P, Dalda N, Kern A, et al. Generation of complex
            72.  Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier   human organoid models including vascular networks
                breakdown in Alzheimer disease and other neurodegenerative   by incorporation of mesodermal progenitor cells.  Sci
                disorders. Nat Rev Neurol. 2018;14(3):133-150.   Rep. 2019;9(1):15663.
                doi: 10.1038/nrneurol.2017.188                   doi: 10.1038/s41598-019-52204-7
            73.  Yang Y, Rosenberg GA. Blood-brain barrier breakdown   85.  Logan S, Arzua T, Canfield SG,  et al. Studying human
                in  acute  and  chronic  cerebrovascular  disease.  Stroke.   neurological disorders using induced pluripotent stem cells:
                2011;42(11):3323-3328.                           From 2D monolayer to 3D organoid and blood brain barrier
                                                                 models. Compr Physiol. 2019;9(2):565-611.
                doi: 10.1161/STROKEAHA.110.608257
                                                                 doi: 10.1002/cphy.c180025
            74.  Daneman R. The blood-brain barrier in health and disease.
                Ann Neurol. 2012;72(5):648-672.               86.  Idris F, Hanna Muharram S, Zaini Z, Diah S. Establishment
                                                                 of murine  in vitro blood-brain barrier models using
                doi: 10.1002/ana.23648                           immortalized cell lines: Co-cultures of brain endothelial
            75.  Keaney J, Campbell M. The dynamic blood-brain barrier.   cells, astrocytes, and neurons. bioRxiv. 2018:435990.
                FEBS J. 2015;282(21):4067-4079.                  doi: 10.1101/435990
                doi: 10.1111/febs.13412                       87.  Wang Y, Wang N, Cai B, Wang GY, Li J, Piao XX. In vitro
            76.  Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The   model of the blood-brain barrier established by co-culture
                role of brain barriers in fluid movement in the CNS: Is there   of primary cerebral microvascular endothelial and astrocyte
                a ‘glymphatic’system? Acta Neuropathol. 2018;135:387-407.  cells. Neural Regen Res. 2015;10(12):2011-2017.
                                                                 doi: 10.4103/1673-5374.172320
                doi: 10.1007/s00401-018-1812-4
                                                              88.  Al Ahmad A, Taboada CB, Gassmann M, Ogunshola OO.
            77.  Muoio V, Persson PB, Sendeski MM. The neurovascular
                unit - concept review. Acta Physiol (Oxf). 2014;210(4):790-798.  Astrocytes and pericytes differentially modulate blood-brain
                                                                 barrier characteristics during development and hypoxic
                doi: 10.1111/apha.12250                          insult. J Cereb Blood Flow Metab. 2011;31(2):693-705.
            78.  Mansour  AA,  Schafer  ST,  Gage  FH.  Cellular  complexity      doi: 10.1038/jcbfm.2010.148
                in brain organoids: Current progress and unsolved issues.   89.  Ham O, Jin YB, Kim J, Lee MO. Blood vessel formation in
                Semin Cell Dev Biol. 2021;111:32-39.
                                                                 cerebral organoids formed from human embryonic stem
                doi: 10.1016/j.semcdb.2020.05.013                cells. Biochem Biophys Res Commun. 2020;521(1):84-90.


            Volume 1 Issue 2 (2025)                         30                                doi: 10.36922/or.8162
   74   75   76   77   78   79   80   81   82   83   84