Page 82 - OR-1-2
P. 82

doi: 10.7150/thno.66670                          doi: 10.1126/sciadv.aat5847
            133. Jang  H,  Kim  SH,  Koh  Y,  Yoon  KJ.  Engineering  brain   144. Maoz BM, Herland A, FitzGerald EA, et al. A linked organ-
                organoids: Toward mature neural circuitry with an intact   on-chip model of the human neurovascular unit reveals the
                cytoarchitecture. Int J Stem Cells. 2022;15(1):41-59.  metabolic coupling of endothelial and neuronal cells.  Nat
                                                                 Biotechnol. 2018;36(9):865-874.
                doi: 10.15283/ijsc22004
            134. Marchini A, Favoino C, Gelain F. Multi-functionalized self-     doi: 10.1038/nbt.4226
                assembling peptides as reproducible 3D cell culture systems   145. Grebenyuk S, Abdel Fattah AR, Kumar M, et al. Large-scale
                enabling differentiation and survival of various human   perfused tissues via synthetic 3D soft microfluidics.  Nat
                neural stem cell lines. Front Neurosci. 2020;14:413.  Commun. 2023;14(1):193.
                doi: 10.3389/fnins.2020.00413                    doi: 10.1038/s41467-022-35619-1
            135. Zhang S, Wan Z, Kamm RD. Vascularized organoids on a   146. Kajtez J, Nilsson F, Fiorenzano A, Parmar M, Emneus J. 3D
                chip: Strategies for engineering organoids with functional   biomaterial models of human brain disease. Neurochem Int
                vasculature. Lab Chip. 2021;21(3):473-488.       2021;147:105043.
                doi: 10.1039/d0lc01186j                          doi: 10.1016/j.neuint.2021.105043
            136. Zhao X, Xu Z, Xiao L, et al. Review on the vascularization   147. Miny L, Maisonneuve BGC, Quadrio I, Honegger T.
                of organoids and organoids-on-a-C hip.  Front  Bioeng   Modeling neurodegenerative diseases using  in vitro
                Biotechnol. 2021;9:637048.                       compartmentalized microfluidic devices.  Front Bioeng
                doi: 10.3389/fbioe.2021.637048                   Biotechnol. 2022;10:919646.
            137. Adriani G, Ma D, Pavesi A, Kamm RD, Goh EL. A  3D      doi: 10.3389/fbioe.2022.919646
                neurovascular microfluidic model consisting of neurons,   148. Amirifar L, Shamloo A, Nasiri R,  et al. Brain-on-a-chip:
                astrocytes and cerebral endothelial cells as a blood-brain   Recent advances in design and techniques for microfluidic
                barrier. Lab Chip. 2017;17(3):448-459.           models of the brain in health and disease.  Biomaterials.
                doi: 10.1039/c6lc00638h                          2022;285:121531.
            138. Osaki T, Sivathanu V, Kamm RD. Engineered 3D vascular      doi: 10.1016/j.biomaterials.2022.121531
                and neuronal networks in a microfluidic platform.  Sci   149. Richards D, Jia J, Yost M, Markwald R, Mei Y. 3D bioprinting
                Rep. 2018;8(1):5168.                             for vascularized tissue fabrication.  Ann Biomed Eng.
                                                                 2017;45(1):132-147.
                doi: 10.1038/s41598-018-23512-1
                                                                 doi: 10.1007/s10439-016-1653-z
            139. Gong J, Gong Y, Zou T,  et al. A  controllable perfusion
                microfluidic  chip  for  facilitating  the  development  of   150. Lin TY, Do T, Kwon P, Lillehoj PB. 3D printed metal
                retinal ganglion cells in human retinal organoids.  Lab   molds for hot embossing plastic microfluidic devices.  Lab
                Chip. 2023;23(17):3820-3836.                     Chip. 2017;17(2):241-247.
                doi: 10.1039/d3lc00054k                          doi: 10.1039/c6lc01430e
            140. Abdulla A, Chen S, Chen Z,  et al. Three-dimensional   151. Gomez K, Yarmey VR, Mane H, San-Miguel A. Microfluidic
                microfluidics  with dynamic  fluidic  perturbation promotes   and computational tools for neurodegeneration studies.
                viability and uniformity of human cerebral organoids.   Annu Rev Chem Biomol Eng. 2025;16.
                Biosens Bioelectron. 2023;240:115635.
                                                                 doi: 10.1146/annurev-chembioeng-082223-054547
                doi: 10.1016/j.bios.2023.115635
                                                              152. Ko J, Park D, Lee J, et al. Microfluidic high-throughput 3D
            141. Seiler ST, Mantalas GL, Selberg J, et al. Modular automated   cell culture. Nat Rev Bioeng. 2024;2(6):453-469.
                microfluidic cell culture platform reduces glycolytic stress in      doi: 10.1038/s44222-024-00163-8
                cerebral cortex organoids. Sci Rep. 2022;12(1):20173.
                                                              153. Syama S, Mohanan P. Microfluidic based human-on-a-chip:
                doi: 10.1038/s41598-022-20096-9
                                                                 A  revolutionary  technology  in  scientific  research.  Trends
            142. Salmon I, Grebenyuk S, Abdel Fattah AR, et al. Engineering   Food Sci Technol. 2021;110:711-728.
                neurovascular organoids with 3D printed microfluidic chips.
                Lab Chip. 2022;22(8):1615-1629.                  doi: 10.1016/j.tifs.2021.02.049
                                                              154.  Chen C, Rengarajan V, Kjar A, Huang Y. A matrigel-free method
                doi: 10.1039/d1lc00535a
                                                                 to generate matured human cerebral organoids using 3D-printed
            143. Osaki T, Uzel SGM, Kamm RD. Microphysiological 3D   microwell arrays. Bioact Mater. 2021;6(4):1130-1139.
                model of amyotrophic lateral sclerosis (ALS) from human
                iPS-derived muscle cells and optogenetic motor neurons. Sci      doi: 10.1016/j.bioactmat.2020.10.003
                Adv. 2018;4(10):eaat5847.                     155. Beduer A, Braschler T, Peric O, et al. A compressible scaffold


            Volume 1 Issue 2 (2025)                         33                                doi: 10.36922/or.8162
   77   78   79   80   81   82   83   84   85   86   87