Page 82 - OR-1-2
P. 82
doi: 10.7150/thno.66670 doi: 10.1126/sciadv.aat5847
133. Jang H, Kim SH, Koh Y, Yoon KJ. Engineering brain 144. Maoz BM, Herland A, FitzGerald EA, et al. A linked organ-
organoids: Toward mature neural circuitry with an intact on-chip model of the human neurovascular unit reveals the
cytoarchitecture. Int J Stem Cells. 2022;15(1):41-59. metabolic coupling of endothelial and neuronal cells. Nat
Biotechnol. 2018;36(9):865-874.
doi: 10.15283/ijsc22004
134. Marchini A, Favoino C, Gelain F. Multi-functionalized self- doi: 10.1038/nbt.4226
assembling peptides as reproducible 3D cell culture systems 145. Grebenyuk S, Abdel Fattah AR, Kumar M, et al. Large-scale
enabling differentiation and survival of various human perfused tissues via synthetic 3D soft microfluidics. Nat
neural stem cell lines. Front Neurosci. 2020;14:413. Commun. 2023;14(1):193.
doi: 10.3389/fnins.2020.00413 doi: 10.1038/s41467-022-35619-1
135. Zhang S, Wan Z, Kamm RD. Vascularized organoids on a 146. Kajtez J, Nilsson F, Fiorenzano A, Parmar M, Emneus J. 3D
chip: Strategies for engineering organoids with functional biomaterial models of human brain disease. Neurochem Int
vasculature. Lab Chip. 2021;21(3):473-488. 2021;147:105043.
doi: 10.1039/d0lc01186j doi: 10.1016/j.neuint.2021.105043
136. Zhao X, Xu Z, Xiao L, et al. Review on the vascularization 147. Miny L, Maisonneuve BGC, Quadrio I, Honegger T.
of organoids and organoids-on-a-C hip. Front Bioeng Modeling neurodegenerative diseases using in vitro
Biotechnol. 2021;9:637048. compartmentalized microfluidic devices. Front Bioeng
doi: 10.3389/fbioe.2021.637048 Biotechnol. 2022;10:919646.
137. Adriani G, Ma D, Pavesi A, Kamm RD, Goh EL. A 3D doi: 10.3389/fbioe.2022.919646
neurovascular microfluidic model consisting of neurons, 148. Amirifar L, Shamloo A, Nasiri R, et al. Brain-on-a-chip:
astrocytes and cerebral endothelial cells as a blood-brain Recent advances in design and techniques for microfluidic
barrier. Lab Chip. 2017;17(3):448-459. models of the brain in health and disease. Biomaterials.
doi: 10.1039/c6lc00638h 2022;285:121531.
138. Osaki T, Sivathanu V, Kamm RD. Engineered 3D vascular doi: 10.1016/j.biomaterials.2022.121531
and neuronal networks in a microfluidic platform. Sci 149. Richards D, Jia J, Yost M, Markwald R, Mei Y. 3D bioprinting
Rep. 2018;8(1):5168. for vascularized tissue fabrication. Ann Biomed Eng.
2017;45(1):132-147.
doi: 10.1038/s41598-018-23512-1
doi: 10.1007/s10439-016-1653-z
139. Gong J, Gong Y, Zou T, et al. A controllable perfusion
microfluidic chip for facilitating the development of 150. Lin TY, Do T, Kwon P, Lillehoj PB. 3D printed metal
retinal ganglion cells in human retinal organoids. Lab molds for hot embossing plastic microfluidic devices. Lab
Chip. 2023;23(17):3820-3836. Chip. 2017;17(2):241-247.
doi: 10.1039/d3lc00054k doi: 10.1039/c6lc01430e
140. Abdulla A, Chen S, Chen Z, et al. Three-dimensional 151. Gomez K, Yarmey VR, Mane H, San-Miguel A. Microfluidic
microfluidics with dynamic fluidic perturbation promotes and computational tools for neurodegeneration studies.
viability and uniformity of human cerebral organoids. Annu Rev Chem Biomol Eng. 2025;16.
Biosens Bioelectron. 2023;240:115635.
doi: 10.1146/annurev-chembioeng-082223-054547
doi: 10.1016/j.bios.2023.115635
152. Ko J, Park D, Lee J, et al. Microfluidic high-throughput 3D
141. Seiler ST, Mantalas GL, Selberg J, et al. Modular automated cell culture. Nat Rev Bioeng. 2024;2(6):453-469.
microfluidic cell culture platform reduces glycolytic stress in doi: 10.1038/s44222-024-00163-8
cerebral cortex organoids. Sci Rep. 2022;12(1):20173.
153. Syama S, Mohanan P. Microfluidic based human-on-a-chip:
doi: 10.1038/s41598-022-20096-9
A revolutionary technology in scientific research. Trends
142. Salmon I, Grebenyuk S, Abdel Fattah AR, et al. Engineering Food Sci Technol. 2021;110:711-728.
neurovascular organoids with 3D printed microfluidic chips.
Lab Chip. 2022;22(8):1615-1629. doi: 10.1016/j.tifs.2021.02.049
154. Chen C, Rengarajan V, Kjar A, Huang Y. A matrigel-free method
doi: 10.1039/d1lc00535a
to generate matured human cerebral organoids using 3D-printed
143. Osaki T, Uzel SGM, Kamm RD. Microphysiological 3D microwell arrays. Bioact Mater. 2021;6(4):1130-1139.
model of amyotrophic lateral sclerosis (ALS) from human
iPS-derived muscle cells and optogenetic motor neurons. Sci doi: 10.1016/j.bioactmat.2020.10.003
Adv. 2018;4(10):eaat5847. 155. Beduer A, Braschler T, Peric O, et al. A compressible scaffold
Volume 1 Issue 2 (2025) 33 doi: 10.36922/or.8162

