Page 80 - OR-1-2
P. 80

doi: 10.1016/j.bbrc.2019.10.079                  organoids. Front Bioeng Biotechnol. 2022;10:1048731.
            90.  Shaji M, Tamada A, Fujimoto K, Muguruma K, Karsten SL,      doi: 10.3389/fbioe.2022.1048731
                Yokokawa R. Deciphering potential vascularization factors   102. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF.
                of on-chip co-cultured hiPSC-derived cerebral organoids.   Extracellular  matrix  hydrogels from decellularized tissues:
                Lab Chip. 2024;24(4):680-696.
                                                                 Structure and function. Acta Biomater. 2017;49:1-15.
                doi: 10.1039/d3lc00930k
                                                                 doi: 10.1016/j.actbio.2016.11.068
            91.  Ream MW, Randolph LN, Jiang Y, Chang Y, Bao X, Lian XL.   103. Zhang Y, He Y, Bharadwaj S, et al. Tissue-specific extracellular
                Direct programming of human pluripotent stem cells into   matrix coatings for the promotion of cell proliferation and
                endothelial progenitors with SOX17 and FGF2.  Stem Cell
                Reports. 2024;19(4):579-595.                     maintenance of cell phenotype.  Biomaterials. 2009;30(23-
                                                                 24):4021-4028.
                doi: 10.1016/j.stemcr.2024.02.006
                                                                 doi: 10.1016/j.biomaterials.2009.04.005
            92.  Lian X, Bao X, Al-Ahmad A, et al. Efficient differentiation   104. DeQuach JA, Yuan SH,  Goldstein  LS,  Christman KL.
                of human pluripotent stem cells to endothelial progenitors
                via small-molecule activation of WNT signaling. Stem Cell   Decellularized porcine brain matrix for cell culture and
                Reports. 2014;3(5):804-816.                      tissue engineering scaffolds. Tissue Eng Part A. 2011;17(21-
                                                                 22):2583-2592.
                doi: 10.1016/j.stemcr.2014.09.005
                                                                 doi: 10.1089/ten.TEA.2010.0724
            93.  Song L, Yuan X, Jones Z, et al. Assembly of human stem cell-
                derived cortical spheroids and vascular spheroids to model   105. Simsa R, Rothenbucher T, Gurbuz H, et al. Brain organoid
                3-d brain-like tissues. Sci Rep. 2019;9(1):5977.  formation on decellularized porcine brain ECM hydrogels.
                                                                 PLoS One. 2021;16(1):e0245685.
                doi: 10.1038/s41598-019-42439-9
                                                                 doi: 10.1371/journal.pone.0245685
            94.  Ahn Y, An JH, Yang HJ, et al. Human blood vessel organoids
                penetrate human cerebral organoids and form a vessel-like   106. Sood D, Chwalek K, Stuntz E, et al. Fetal brain extracellular
                system. Cells. 2021;10(8):2036.                  matrix boosts neuronal network formation in 3D
                                                                 bioengineered model of cortical brain tissue. ACS Biomater
                doi: 10.3390/cells10082036                       Sci Eng. 2016;2(1):131-140.
            95.  Aisenbrey EA, Murphy WL. Synthetic alternatives to      doi: 10.1021/acsbiomaterials.5b00446
                matrigel. Nat Rev Mater. 2020;5(7):539-551.
                                                              107. Jin Y, Lee JS, Kim J,  et al. Three-dimensional brain-like
                doi: 10.1038/s41578-020-0199-8                   microenvironments  facilitate  the  direct  reprogramming
            96.  Kim YH, Choi SH, D’Avanzo C, et al. A 3D human neural cell   of fibroblasts into therapeutic neurons.  Nat  Biomed  Eng.
                culture system for modeling Alzheimer’s disease. Nat Protoc.   2018;2(7):522-539.
                2015;10(7):985-1006.                             doi: 10.1038/s41551-018-0260-8
                doi: 10.1038/nprot.2015.065                   108. Yi HG, Jeong YH, Kim Y,  et al. A  bioprinted human-
            97.  Park J, Wetzel I, Marriott I,  et al. A  3D human triculture   glioblastoma-on-a-chip for the identification of patient-
                system modeling neurodegeneration and neuroinflammation   specific responses to chemoradiotherapy. Nat Biomed Eng.
                in Alzheimer’s disease. Nat Neurosci. 2018;21(7):941-951.  2019;3(7):509-519.
                doi: 10.1038/s41593-018-0175-4                   doi: 10.1038/s41551-019-0363-x
            98.  Kroll KT, Homan KA, Uzel SGM,  et al. A  perfusable,   109. Koh I, Cha J, Park J, Choi J, Kang SG, Kim P. The mode and
                vascularized kidney organoid-on-chip model. Biofabrication.   dynamics of glioblastoma cell invasion into a decellularized
                2024;16(4): 045003.                              tissue-derived extracellular matrix-based three-dimensional
                                                                 tumor model. Sci Rep. 2018;8(1):4608.
                doi: 10.1088/1758-5090/ad5ac0
                                                                 doi: 10.1038/s41598-018-22681-3
            99.  Quintard C, Tubbs E, Jonsson G,  et al. A  microfluidic
                platform integrating functional vascularized organoids-on-  110. Tan J, Zhang QY, Song YT,  et al. Accelerated bone defect
                chip. Nat Commun. 2024;15(1):1452.               regeneration through sequential activation of the M1 and
                                                                 M2  phenotypes  of  macrophages  by  a  composite BMP-2@
                doi: 10.1038/s41467-024-45710-4
                                                                 SIS hydrogel: An immunomodulatory perspective. Compos
            100. Tan SY, Feng X, Cheng LKW, Wu AR. Vascularized human   B Eng. 2022;243:110149.
                brain organoid on-chip. Lab Chip. 2023;23(12):2693-2709.
                                                                 doi: 10.1016/j.compositesb.2022.110149
                doi: 10.1039/d2lc01109c
                                                              111. Nie  R, Zhang QY,  Tan J,  et  al. EGCG modified small
            101. LaMontagne E, Muotri AR, Engler AJ. Recent advancements   intestine submucosa promotes wound healing through
                and  future  requirements  in  vascularization  of  cortical   immunomodulation. Compos B Eng. 2023;267:111005.


            Volume 1 Issue 2 (2025)                         31                                doi: 10.36922/or.8162
   75   76   77   78   79   80   81   82   83   84   85