Page 87 - OR-1-3
P. 87

doi: 10.1002/pbc.23341                        73.  Choudhary  N,  Bhatt  LK,  Prabhavalkar  KS.  Experimental
                                                                 animal models for rheumatoid arthritis. Immunopharmacol
            63.  Allouche M, Delbruck H, Klein B,  et al. Malignant bone
                tumours induced by a local injection of colloidal radioactive   Immunotoxicol. 2018;40:193-200.
                CE-144 in rats as a model for human osteosarcomas. Int J      doi: 10.1080/08923973.2018.1434793
                Cancer. 1980;26:777-782.                      74.  Koenders MI, Devesa I, Marijnissen RJ, et al. Interleukin-1
                doi: 10.1002/ijc.2910260611                      drives pathogenic Th17 cells during spontaneous arthritis in
                                                                 interleukin-1 receptor antagonist-deficient mice.  Arthritis
            64.  Brady JV, Troyer RM, Ramsey SA,  et al.  A  Preliminary   Rheum. 2008;58:3461-3470.
                proteomic investigation of circulating exosomes and
                discovery of biomarkers associated with the progression of      doi: 10.1002/art.23957
                osteosarcoma in a clinical model of spontaneous disease.   75.  Sakaguchi N, Takahashi T, Hata H,  et al. Altered thymic
                Transl Oncol. 2018;11:1137-1146.                 T-cell selection due to a mutation of the ZAP-70 gene causes
                doi: 10.1016/j.tranon.2018.07.004                autoimmune arthritis in mice. Nature. 2003;426:454-460.
            65.  Hamilton CB, Pest MA, Pitelka V, Ratneswaran A, Beier F,      doi: 10.1038/nature02119
                Chesworth B. Weight-bearing asymmetry and vertical   76.  Keffer J, Probert L, Cazlaris H,  et al. Transgenic mice
                activity differences in a rat model of post-traumatic  knee   expressing human tumour necrosis factor: A  predictive
                osteoarthritis. Osteoarthr Cartilage. 2015;23:1178-1185.  genetic model of arthritis. EMBO J. 1991;10:4025-4031.
                doi: 10.1016/j.joca.2015.03.001                  doi: 10.1002/j.1460-2075.1991.tb04978.x
            66.  Li J, Zhang B, Liu WX, et al. Metformin limits osteoarthritis   77.  Dolan CP, Dearth CL, Corona BT, Goldman SM.
                development and progression through activation of AMPK   Retrospective characterization of a rat model of volumetric
                signalling. Ann Rheum Dis. 2020;79:635-645.      muscle loss. BMC Musculoskelet Dis. 2022;23:814.
                doi: 10.1136/annrheumdis-2019-216713             doi: 10.1186/s12891-022-05760-5
            67.  Mooney RA, Sampson ER, Lerea J, Rosier RN, Zuscik MJ.   78.  Funk K, Scheerer N, Verhaegh R, Pütter C, Fandrey J, de
                High-fat diet accelerates progression of osteoarthritis   Groot H. Severe blunt muscle trauma in rats: Only marginal
                after meniscal/ligamentous injury.  Arthritis Res Ther.   hypoxia in the injured area. PLoS One. 2014;9:7.
                2011;13:R198.
                                                                 doi: 10.1371/journal.pone.0111151
                doi: 10.1186/ar3529
                                                              79.  Feng F, Cui B, Fang L,  et al. DDAH1 protects against
            68.  Koboziev I, Scoggin S, Gong X, et al. Effects of curcumin   cardiotoxin-induced muscle injury and regeneration.
                in a mouse model of very high fat diet-induced obesity.   Antioxidants (Basel). 2023;12:1754.
                Biomolecules. 2020;10:1368.                      doi: 10.3390/antiox12091754
                doi: 10.3390/biom10101368                     80.  Morton AB, Norton CE, Jacobsen NL, Fernando CA,
            69.  Kozijn AE, Tartjiono MT, Ravipati S, et al. Human C-reactive   Cornelison DDW, Segal SS. Barium chloride injures
                protein aggravates osteoarthritis development in mice on a   myofibers through calcium-induced proteolysis with
                high-fat diet. Osteoarthr Cartilage. 2019;27:118-128.  fragmentation of motor nerves and microvessels.  Skeletal
                                                                 Muscle. 2019;9:27.
                doi: 10.1016/j.joca.2018.09.007
                                                                 doi: 10.1186/s13395-019-0213-2
            70.  Bryk M, Chwastek J, Mlost J, Kostrzewa M, Starowicz K.
                Sodium monoiodoacetate dose-dependent changes in   81.  Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome
                matrix metalloproteinases and inflammatory components as   editing improves muscle function in a mouse model of
                prognostic factors for the progression of osteoarthritis. Front   Duchenne Muscular Dystrophy. Science. 2016;351:403-407.
                Pharmacol. 2021;12:643605.                       doi: 10.1126/science.aad5143
                doi: 10.3389/fphar.2021.643605                82.  Akamatsu FE, Saleh SO, Teodoro WR, et al. Experimental
            71.  Mapp PI, Sagar DR, Ashraf S, et al. Differences in structural   model of achilles tendon injury in rats.  Acta Cir Bras.
                and pain phenotypes in the sodium monoiodoacetate and   2014;29:417-422.
                meniscal transection models of osteoarthritis.  Osteoarthr      doi: 10.1590/s0102-86502014000700002
                Cartilage. 2013;21:1336-1345.
                                                              83.  Chen L, Liu JP, Tang KL,  et al. Tendon derived stem cells
                doi: 10.1016/j.joca.2013.06.031                  promote platelet-rich plasma healing in collagenase-induced rat
            72.  Trentham D, Townes A, Kang A. Autoimmunity to type-2   achilles tendinopathy. Cell Physiol Biochem. 2014;34:2153-2168.
                collagen-experimental-model of arthritis.  J  Exp Med.      doi: 10.1159/000369659
                1977;146:857-868.
                                                              84.  Öçgüder D, Dogan M, Bektaser S, Akgün E, Tolunay T,
                doi: 10.1084/jem.146.3.857                       Ugurlu M. Comparison of the  open primary repair  with


            Volume 1 Issue 3 (2025)                         29                           doi: 10.36922/OR025280024
   82   83   84   85   86   87   88   89   90   91   92