Page 88 - OR-1-3
P. 88

augmentation and without augmentation in acute achilles   95.  Yu Q, Huang J, Hu J, Zhu H. Advance in spinal cord ischemia
                tendon rupture. Turk J Med. 2011;41:639-646.     reperfusion injury: Blood-spinal cord barrier and remote
                                                                 ischemic preconditioning. Life Sci. 2016;154:34-38.
                doi: 10.3906/sag-1003-699
                                                                 doi: 10.1016/j.lfs.2016.03.046
            85.  Lawrence T, Woodruff M, Aladin A, Davis T. An assessment
                of the tensile properties and technical difficulties of   96.  Scivoletto G, Laurenza L, Mammone A, Foti C, Molinari M.
                two- and four-strand flexor tendon repairs. J Hand Surg Br.   Recovery following ischemic myelopathies and traumatic
                2005;30:294-297.                                 spinal cord lesions. Spinal Cord. 2011;49:897-902.
                doi: 10.1016/j.jhsb.2005.01.003                  doi: 10.1038/sc.2011.31
            86.  Sonnery-Cottet B, Haidar I, Rayes J, et al. Long-term   97.  Piao MS, Lee JK, Jang JW, Kim SH, Kim HS. A mouse model
                graft rupture rates after combined ACL and anterolateral   of photochemically induced spinal cord injury.  J  Korean
                ligament reconstruction versus isolated ACL reconstruction:   Neurosurg Soc. 2009;46:479-483.
                A matched-pair analysis from the SANTI study group. Am J
                Sports Med. 2021;49:2889-2897.                   doi: 10.3340/jkns.2009.46.5.479
                                                              98.  Lim JH, Jung CS, Byeon YE, et al. Establishment of a canine
                doi: 10.1177/03635465211028990
                                                                 spinal cord injury model induced by epidural balloon
            87.  Ahmed RU, Knibbe CA, Wilkins F, Sherwood LC,    compression. J Vet Sci. 2007;8:89-94.
                Howland DR, Boakye M. Porcine spinal cord injury model      doi: 10.4142/jvs.2007.8.1.89
                for translational research across multiple functional systems.
                Exp Neurol. 2023;359:114267.                  99.  Chen  J,  Li  H,  Zeng  S,  et al.  A  pig  model  of  symptomatic
                                                                 spinal epidural hematoma. Eur Spine J. 2024;33:2129-2137.
                doi: 10.1016/j.expneurol.2022.114267
                                                                 doi: 10.1007/s00586-024-08188-8
            88.  Cheriyan T, Ryan DJ, Weinreb JH, et al. Spinal cord injury
                models: A review. Spinal Cord. 2014;52:588-595.  100. Nottingham SA, Springer JE. Temporal and spatial distribution
                                                                 of activated caspase-3 after subdural kainic acid infusions in
                doi: 10.1038/sc.2014.91
                                                                 rat spinal cord. J Comp Neurol. 2003;464:463-471.
            89.  Choo AMT, Liu J, Liu Z, Dvorak M, Tetzlaff W, Oxland TR.
                Modeling spinal cord contusion, dislocation, and distraction:      doi: 10.1002/cne.10806
                characterization of vertebral clamps, injury severities, and node   101. Imai M, Watanabe M, Suyama K, et al. Delayed accumulation
                of ranvier deformations. J Neurosci Meth. 2009;181:6-17.  of  activated  macrophages  and  inhibition  of  remyelination
                                                                 after spinal cord injury in an adult rodent model. J Neurosurg
                doi: 10.1016/j.jneumeth.2009.04.007
                                                                 Spine. 2008;8:58-66.
            90.  Zheng ZL, Morykwas MJ, Tatter S, et al. Ameliorating spinal      doi: 10.3171/spi-08/01/058
                cord injury in an animal model with mechanical tissue
                resuscitation. Neurosurgery. 2016;78:868-876.  102. Yang T, Liu X, Cao R, et al. Establishment of a magnetically
                                                                 controlled scalable nerve injury model.  Adv Sci  (Weinh).
                doi: 10.1227/neu.0000000000001063
                                                                 2024;11:e2405265.
            91.  Bennett AD, Taglialatela G, Perez-Polo R, Hulsebosch CE.      doi: 10.1002/advs.202405265
                NGF levels decrease in the spinal cord and dorsal root ganglion
                after spinal hemisection. Neuroreport. 1999;10:889-893.  103. Xu Y, Rentuya N, Yu T, et al. Tuina promotes nerve myelin
                                                                 regeneration in SNI rats through Piezo1/YAP/TAZ pathway.
                doi: 10.1097/00001756-199903170-00040
                                                                 J Orthop Surg Res. 2025;20:454.
            92.  Babu RS, Namasivayam A. Recovery of bipedal locomotion
                in bonnet macaques after spinal cord injury: Footprint      doi: 10.1186/s13018-025-05794-0
                analysis. Synapse. 2008;62:432-447.           104. Suhar RA, Marquardt LM, Song SS, et al. Elastin-like proteins
                                                                 to support peripheral nerve regeneration in guidance
                doi: 10.1002/syn.20513
                                                                 conduits. ACS Biomater Sci. 2021;7:4209-4220.
            93.  Choo AM, Liu J, Lam CK, Dvorak M, Tetzlaff W, Oxland TR.
                Contusion, dislocation, and distraction: Primary hemorrhage      doi: 10.1021/acsbiomaterials.0c01053
                and membrane permeability in distinct mechanisms of   105. Vijayavenkataraman S. Nerve guide conduits for peripheral
                spinal cord injury. J Neurosurg Spine. 2007;6:255-266.  nerve injury repair: A  review on design, materials and
                                                                 fabrication methods. Acta Biomater. 2020;106:54-69,
                doi: 10.3171/spi.2007.6.3.255
                                                                 doi: 10.1016/j.actbio.2020.02.003
            94.  Fang B, Li XM, Sun XJ,  et al. Ischemic  preconditioning
                protects against spinal cord ischemia-reperfusion injury in   106. Singh VK, Haq A, Tiwari M, Saxena AK. Approach to
                rabbits by attenuating blood spinal cord barrier disruption.   management of nerve gaps in peripheral nerve injuries.
                Int J Mol Sci. 2013;14:10343-10354.              Injury. 2022;53:1308-1318.
                doi: 10.3390/ijms140510343                       doi: 10.1016/j.injury.2022.01.031


            Volume 1 Issue 3 (2025)                         30                           doi: 10.36922/OR025280024
   83   84   85   86   87   88   89   90   91   92   93