Page 91 - OR-1-3
P. 91

molecular changes of human chondrocytes exposed to the      doi: 10.1038/s41587-024-02344-7
                rotating wall vessel bioreactor. Biomolecules. 2023;14:25.
                                                              165. Osaki T, Uzel SGM, Kamm RD. Microphysiological 3D
                doi: 10.3390/biom14010025                        model of amyotrophic lateral sclerosis (ALS) from human
                                                                 iPS-derived muscle cells and optogenetic motor neurons. Sci
            154. Crispim J, Ito K.  De novo neo-hyaline-cartilage from   Adv. 2018;4:eaat5847.
                bovine organoids in viscoelastic hydrogels.  Acta Biomater.
                2021;128:236-249.                                doi: 10.1126/sciadv.aat5847
                doi: 10.1016/j.actbio.2021.04.008             166. Capel AJ, Rimington RP, Fleming JW,  et al. Scalable 3D
                                                                 printed molds for human tissue engineered skeletal muscle.
            155. Wu Y, Jia Z, Sun K, Zhou G, Tao K. A multi-gradient organoid   Front Bioeng Biotechnol. 2019;7:20.
                of articular cartilage with bionic matrix microenvironment.
                Biomaterials. 2025;322:123393.                   doi: 10.3389/fbioe.2019.00020
                doi: 10.1016/j.biomaterials.2025.123393       167. Kindler U, Zaehres H, Mavrommatis L. Generation of
                                                                 skeletal muscle organoids from human pluripotent stem
            156. Yang  B,  Li  Z,  Yang  Z,  et al.  Recapitulating  hypoxic   cells. Bio Protoc. 2024;14:e4984.
                metabolism in cartilaginous organoids via adaptive cell-
                matrix interactions enhances histone lactylation and      doi: 10.21769/BioProtoc.4984
                cartilage regeneration. Nat Commun. 2025;16:2711.  168. Chromiak J, Shansky J, Perrone C, Vandenburgh H.
                doi: 10.1038/s41467-025-57779-6                  Bioreactor perfusion system for the long-term maintenance
                                                                 of tissue-engineered skeletal muscle organoids. In Vitro Cell
            157. Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small joint   Dev Biol Anim. 1998;34:694-703.
                organoids 3D bioprinting: Construction strategy and
                application. Small. 2023;20:2302506.             doi: 10.1007/s11626-998-0065-2
                doi: 10.1002/smll.202302506                   169. Li J, Yang Y, Yi Z,  et  al. Microdroplet-engineered skeletal
                                                                 muscle organoids from primary tissue recapitulate parental
            158. de Melo BAG, Jodat YA, Mehrotra S,  et al. 3D printed   physiology with high reproducibility. Research (Wash D C).
                cartilage‐like tissue constructs with spatially controlled   2025;8:0699.
                mechanical properties. Adv Funct Mater. 2019;29:1906330.
                                                                 doi: 10.34133/research.0699
                doi: 10.1002/adfm.201906330
                                                              170. Ramasamy SK, Kusumbe AP, Schiller M, et al. Blood flow
            159.  Wei X, Qiu J, Lai R, et al. A human organoid drug screen identifies   controls bone vascular function and osteogenesis.  Nat
                α2-adrenergic receptor signaling as a therapeutic target for   Commun. 2016;7:13601.
                cartilage regeneration. Cell Stem Cell. 2024;31:1813-1830.
                                                                 doi: 10.1038/ncomms13601
                doi: 10.1016/j.stem.2024.09.001
                                                              171. Sun W, Ye B, Chen S, et al. Neuro-bone tissue engineering:
            160. Zhang C, Jing Y, Wang J, et al. Skeletal organoids. Biomater   Emerging mechanisms, potential strategies,  and current
                Transl. 2024;5:390-410.                          challenges. Bone Res. 2023;11:65.
                doi: 10.12336/biomatertransl.2024.04.005         doi: 10.1038/s41413-023-00302-8
            161. Shin  MK, Bang JS,  Lee  JE,  et al.  Generation  of skeletal   172. Duan J, Fang Y, Tian Y, Wang Z, Yang B, Xiong Z. 3D
                muscle organoids from human pluripotent stem cells to   bioprinting of prevascularized bone organoids for rapid
                model myogenesis and muscle regeneration. Int J Mol Sci.   in  situ  cranial  bone  reconstruction.  Adv Healthc Mater.
                2022;23:5108.                                    2025:2501376.
                doi: 10.3390/ijms23095108                        doi: 10.1002/adhm.202501376
            162. Lehka L, Rędowicz M. Mechanisms regulating myoblast   173. Li A, Sasaki J, Abe G,  et al. Vascularization of a bone
                fusion: A  multilevel interplay.  Semin Cell Dev Biol.   organoid using dental pulp stem cells.  Stem Cells Int.
                2020;104:81-92.                                  2023;2023:5367887.
                doi: 10.1016/j.semcdb.2020.02.004                doi: 10.1155/2023/5367887
            163. Sousa-Victor P, García-Prat L, Muñoz-Cánoves P. Control   174.  Jusoh N, Oh S, Kim S, Kim J, Jeon NL. Microfluidic vascularized
                of satellite cell function in muscle regeneration and its   bone tissue model with hydroxyapatite-incorporated
                disruption in ageing. Nat Rev Mol Cell Biol. 2021;23:204-226.  extracellular matrix. Lab Chip. 2015;15:3984-3988.
                doi: 10.1038/s41580-021-00421-2                  doi: 10.1039/c5lc00698h
            164. Price FD, Matyas MN, Gehrke AR, et al. Organoid culture   175. Chen Z, Bo Q, Wang C, Xu Y, Fei X, Chen R. Single BMSC-
                promotes  dedifferentiation  of  mouse  myoblasts  into  stem   derived cartilage organoids for gradient heterogeneous
                cells capable of complete muscle regeneration. Nat Biotechnol.   osteochondral regeneration by leveraging native vascular
                2024;43:889-903.                                 microenvironment. J Nanobiotechnol. 2025;23:325.


            Volume 1 Issue 3 (2025)                         33                           doi: 10.36922/OR025280024
   86   87   88   89   90   91   92   93   94   95   96