Page 96 - OR-1-3
P. 96

268. Sawai  T,  Hayashi  Y,  Niikawa  T,  et al.  Mapping  the  ethical   mechanical loading. Lab Chip. 2023;23:3405-342.
                issues of brain organoid research and application.  AJOB      doi: 10.1039/d3lc00154g
                Neurosci. 2022;13:81-94.
                                                              280. Sun Y, Ikeuchi Y, Guo F, Hyun I, Ming G, Fu J. Bioengineering
                doi: 10.1080/21507740.2021.1896603
                                                                 innovations for neural organoids with enhanced fidelity and
            269. Hyun I, Scharf-Deering J, Lunshof J. Ethical issues related to   function. Cell Stem Cell. 2025;32:689-709.
                brain organoid research. Brain Res. 2020;1732:146653.
                                                                 doi: 10.1016/j.stem.2025.03.014
                doi: 10.1016/j.brainres.2020.146653
                                                              281. Jin Y, Kim J, Lee J,  et al. Vascularized liver organoids
            270. Lensink MA, Boers SN, Gulmans VAM, Jongsma KR,   generated using induced hepatic tissue and dynamic liver-
                Bredenoord AL. Mini-gut feelings: Perspectives of people   specific microenvironment as a drug testing platform. Adv
                with cystic fibrosis on the ethics and governance of organoid   Funct Mater. 2018;28:1801954.
                biobanking. Per Med. 2021;18:241-254.
                                                                 doi: 10.1002/adfm.201801954
                doi: 10.2217/pme-2020-0161
                                                              282. Zare Harofte S, Soltani M, Siavashy S, Raahemifar K. Recent
            271. Haselager DR, Boers SN, Jongsma KR, Vinkers C,   advances of utilizing artificial intelligence in lab on a chip for
                Broekman ML, Bredenoord AL. Breeding brains? Patients’   diagnosis and treatment. Small. 2022;18:2203169.
                and laymen’s perspectives on cerebral organoids. Regen Med.
                2020;15:2351-2360.                               doi: 10.1002/smll.202203169
                doi: 10.2217/rme-2020-0108                    283. Babaliari E, Petekidis G, Chatzinikolaidou M. A  precisely
                                                                 flow-controlled microfluidic  system  for  enhanced  pre-
            272.  Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-  osteoblastic  cell  response  for  bone  tissue  engineering.
                chip inhabited by microbial flora that experiences intestinal   Bioengineering (Basel). 2018;5:66.
                peristalsis-like motions and flow. Lab Chip. 2012;12:2165-2174.
                                                                 doi: 10.3390/bioengineering5030066
                doi: 10.1039/c2lc40074j
                                                              284. Deng AF, Wang FX, Wang SC, Zhang YZ, Bai L, Su JC. Bone-
            273. Habibey R, Rojo Arias J, Striebel J, Busskamp V. Microfluidics   organ axes: Bidirectional crosstalk. Mil Med Res. 2024;11:37.
                for neuronal cell and circuit engineering.  Chem Rev.
                2022;122:14842-14880.                            doi: 10.1186/s40779-024-00540-9
                doi: 10.1021/acs.chemrev.2c00212              285. Pirosa A, Gottardi R, Alexander P, Puppi D, Chiellini F,
                                                                 Tuan  RS. An  in  vitro chondro-osteo-vascular triphasic
            274. Wang H, Ning X, Zhao F, Zhao H, Li D. Human organoids-on-  model of the osteochondral complex.  Biomaterials.
                chips for biomedical research and applications. Theranostics.   2021;272:120773.
                2024;14:788-818.
                                                                 doi: 10.1016/j.biomaterials.2021.120773
                doi: 10.7150/thno.90492
                                                              286. Gu Y, Zhang W, Wu X, Zhang Y, Xu K, Su J. Organoid
            275. Whelan IT, Burdis R, Shahreza S, Moeendarbary E, Hoey DA,   assessment technologies. Clin Transl Med. 2023;13:1499.
                Kelly DJ. A microphysiological model of bone development
                and regeneration. Biofabrication. 2023;15:034103.     doi: 10.1002/ctm2.1499
                doi: 10.1088/1758-5090/acd6be                 287. Dueñas ME, Peltier-Heap RE, Leveridge M, Annan RS,
                                                                 Büttner FH, Trost M. Advances in high-throughput
            276. Monteduro AG, Rizzato S, Caragnano G, Trapani A,   mass  spectrometry  in  drug  discovery.  EMBO Mol Med.
                Giannelli  G, Maruccio G. Organs-on-chips technologies-a   2023;15:14850.
                guide from disease models to opportunities for drug
                development. Biosens Bioelectron. 2023;231:115271.     doi: 10.15252/emmm.202114850
                doi: 10.1016/j.bios.2023.115271               288. Wu J, Yang Z, Yang B, Huang H. The application of organoids
                                                                 in the research of skeletal  diseases: Current status and
            277. Kim SK, Kim YH, Park S, Cho SW. Organoid engineering   prospects. Stud Health Technol Inform. 2023;308:597-604.
                with microfluidics and biomaterials for liver, lung disease,
                and cancer modeling. Acta Biomater. 2021;132:37-51.     doi: 10.3233/shti230890
                doi: 10.1016/j.actbio.2021.03.002             289. Stidham R, Takenaka K. Artificial intelligence for disease
                                                                 assessment in inflammatory bowel disease: How will it
            278. Low L, Mummery C, Berridge B, Austin C, Tagle D. Organs-  change our practice? Gastroenterology. 2022;162:1493-1506.
                on-chips: Into the next decade.  Nat Rev Drug Discov.
                2021;20:345-361.                                 doi: 10.1053/j.gastro.2021.12.238
                doi: 10.1038/s41573-020-0079-3                290. Mansoorifar A, Gordon R, Bergan R, Bertassoni LE. Bone-
                                                                 on-a-chip: Microfluidic technologies and microphysiologic
            279. Scheinpflug J, Hofer CT, Schmerbeck SS,  et al.
                A  microphysiological system for studying human bone   models of bone tissue. Adv Funct Mater. 2021;31:2006796.
                biology under simultaneous control of oxygen tension and      doi: 10.1002/adfm.202006796


            Volume 1 Issue 3 (2025)                         38                           doi: 10.36922/OR025280024
   91   92   93   94   95   96   97   98   99   100   101