Page 35 - TD-2-1
P. 35

Tumor Discovery                                                  An approach for classification of lung nodules



               IEEE International Conference on Image Processing (ICIP).   aided detection of solid and ground glass nodules in thoracic
               New York City: IEEE.                               CT images using two independent cad systems. In: The Fourth
                                                                  International Workshop on Pulmonary Image Analysis.
            27.  Gambhir  S, Shepherd  J, Shah B,  et al., 1998,  Analytical
               decision model for the cost-effective management of solitary   39.  Shen S, Bui AA, Cong J,  et  al., 2015, An automated lung
               pulmonary nodules. J Clin Oncol, 16(6): 2113–2125.  segmentation  approach  using  bidirectional  chain  codes
                                                                  to improve nodule detection accuracy.  Comput Biol Med,
            28.  Garro BA, Vazquez RA, 2015, Designing artificial neural
               networks using particle swarm optimization algorithms.   57: 139–149.
               Comput Intell Neurosci, 2015: 369298.              https://doi.org/10.1016/j.compbiomed.2014.12.008
               https://doi.org/10.1155/2015/369298             40.  Shen S, Sandham W, Granat M,  et al., 2005, MRI fuzzy
                                                                  segmentation of brain tissue using neighborhood attraction
            29.  Golosio B, Masala GL, Piccioli A, 2009, A novel
               multithreshold method for nodule detection in lung CT.   with neural-network optimization.  IEEE Trans Inform
               Med Phys, 36(8): 3607–3618.                        Technol Biomed, 9(3): 459–467.
                                                                  https://doi.org/10.1109/titb.2005.847500.
               https://doi.org/10.1118/1.3160107
                                                               41.  Shi, Y, Eberhart R, 1998, A modified particle swarm optimizer.
            30.  Gomathi M, Thangaraj P, 2010a, A computer aided diagnosis
               system for detection of lung cancer nodules using extreme   In Evolutionary Computation Proceedings, 1998. In: IEEE
               learning machine. Int J Eng Sci Technol, 2(10), 5770–5779.  World  Congress  on Computational Intelligence,  The  1998
                                                                  IEEE International Conference. New York City: IEEE.
            31.  Gomathi M, Thangaraj P, 2010b, A computer aided diagnosis
               system for lung cancer detection using support vector   42.  Shih-Chung BL, Freedman  MT, Lin  JS,  Mun  SK,  1993,
               machine. Am J Appl Sci, 7(12): 1532.               Automatic lung nodule detection using profile matching
                                                                  and back-propagation neural network techniques.  J  Digit
               https://doi.org/10.3844/ajassp.2010.1532.1538      Imaging, 6(1): 48–54.
            32.  Alves LG, Novo J, Campilho A, 2016, Hessian based   43.  Yuan J, 2013, Active contour driven by local divergence
               approaches  for  3d lung  nodule  segmentation.  Expert Syst   energies for ultrasound image segmentation.  IET  Image
               Appl, 61: 1–15.                                    Processing, 7(3): 252–259.
               https://doi.org/10.1016/j.eswa.2016.05.024         https://doi.org/10.1049/iet-ipr.2012.0120
            33.  Gould MK, Donington J, Lynch WR, et al., 2013, Evaluation   44.  Zhou S, Cheng Y, Tamura S, 2014, Automated lung
               of individuals with pulmonary nodules: When is it lung   segmentation and smoothing techniques for inclusion of
               cancer. Chest, 143(5 Suppl): 93S–120S.             juxtapleural nodules and pulmonary vessels on chest CT
               https://doi.org/10.1378/chest.12-2351              images. Biomed Signal Process Control, 13: 62–67.
            34.  Grigorescu SE, Petkov N, Kruizinga P, 2002, Comparison      https://doi.org/10.1016/j.bspc.2014.03.010
               of texture features based on Gabor filters. IEEE Trans Image   45.  Flohr  TG,  Schaller  S,  Stierstorfer  K,  et al.,  2005,  Multi-
               Process, 11(10): 1160–1167.                        detector row CT systems and image-reconstruction
               https://doi.org/10.1109/TIP.2002.804262            techniques. Radiology, 235(3): 756–773.
            35.  Gu Y, Kumar V, Hall LO, et al., 2013, Automated delineation      https://doi.org/10.1148/radiol.2353040037
               of lung tumors from CT images using a single click ensemble   46.  Kawane K, Fukuyama H, Yoshida H, et al., 2003, Impaired
               segmentation approach. Pattern Recogn, 46(3): 692–702.  thymic  development in  mouse embryos deficient  in
            36.  Gudise VG, Venayagamoorthy VK, 2003, Comparison   apoptotic DNA degradation. Nat Immunol, 4(2): 138–144.
               of particle swarm optimization and backpropagation      https://doi.org/10.1038/ni881
               as training algorithms for neural networks. In: Swarm
               Intelligence Symposium. New York City: IEEE.    47.  Shi J, Malik J, 2000, Normalized cuts and image segmentation.
                                                                  IEEE Trans Pattern Anal Machine Intell, 22(8): 888–905.
            37.  Hua P, Song, M, Sonka EA,  et al., 2011, Segmentation of
               pathological and diseased lung tissue in CT images using a      https://doi.org/10.1109/34.868688
               graph-search algorithm. In: IEEE International Symposium   48.  Bercoff J, Tanter M, Fink M, 2004, Supersonic shear imaging:
               on Biomedical Imaging: From Nano to Macro. New York   A  new technique for soft tissue elasticity mapping.  IEEE
               City: IEEE.                                        Trans Ultrason Ferroelectr Freq Control, 51(4): 396–409.
            38.  Jacobs C, Murphy K, Twellmann T, et al., 2011, Computer-     https://doi.org/10.1109/tuffc.2004.1295425








            Volume 2 Issue 1 (2023)                         10                          https://doi.org/10.36922/td.317
   30   31   32   33   34   35   36   37   38   39   40