Page 35 - TD-2-1
P. 35
Tumor Discovery An approach for classification of lung nodules
IEEE International Conference on Image Processing (ICIP). aided detection of solid and ground glass nodules in thoracic
New York City: IEEE. CT images using two independent cad systems. In: The Fourth
International Workshop on Pulmonary Image Analysis.
27. Gambhir S, Shepherd J, Shah B, et al., 1998, Analytical
decision model for the cost-effective management of solitary 39. Shen S, Bui AA, Cong J, et al., 2015, An automated lung
pulmonary nodules. J Clin Oncol, 16(6): 2113–2125. segmentation approach using bidirectional chain codes
to improve nodule detection accuracy. Comput Biol Med,
28. Garro BA, Vazquez RA, 2015, Designing artificial neural
networks using particle swarm optimization algorithms. 57: 139–149.
Comput Intell Neurosci, 2015: 369298. https://doi.org/10.1016/j.compbiomed.2014.12.008
https://doi.org/10.1155/2015/369298 40. Shen S, Sandham W, Granat M, et al., 2005, MRI fuzzy
segmentation of brain tissue using neighborhood attraction
29. Golosio B, Masala GL, Piccioli A, 2009, A novel
multithreshold method for nodule detection in lung CT. with neural-network optimization. IEEE Trans Inform
Med Phys, 36(8): 3607–3618. Technol Biomed, 9(3): 459–467.
https://doi.org/10.1109/titb.2005.847500.
https://doi.org/10.1118/1.3160107
41. Shi, Y, Eberhart R, 1998, A modified particle swarm optimizer.
30. Gomathi M, Thangaraj P, 2010a, A computer aided diagnosis
system for detection of lung cancer nodules using extreme In Evolutionary Computation Proceedings, 1998. In: IEEE
learning machine. Int J Eng Sci Technol, 2(10), 5770–5779. World Congress on Computational Intelligence, The 1998
IEEE International Conference. New York City: IEEE.
31. Gomathi M, Thangaraj P, 2010b, A computer aided diagnosis
system for lung cancer detection using support vector 42. Shih-Chung BL, Freedman MT, Lin JS, Mun SK, 1993,
machine. Am J Appl Sci, 7(12): 1532. Automatic lung nodule detection using profile matching
and back-propagation neural network techniques. J Digit
https://doi.org/10.3844/ajassp.2010.1532.1538 Imaging, 6(1): 48–54.
32. Alves LG, Novo J, Campilho A, 2016, Hessian based 43. Yuan J, 2013, Active contour driven by local divergence
approaches for 3d lung nodule segmentation. Expert Syst energies for ultrasound image segmentation. IET Image
Appl, 61: 1–15. Processing, 7(3): 252–259.
https://doi.org/10.1016/j.eswa.2016.05.024 https://doi.org/10.1049/iet-ipr.2012.0120
33. Gould MK, Donington J, Lynch WR, et al., 2013, Evaluation 44. Zhou S, Cheng Y, Tamura S, 2014, Automated lung
of individuals with pulmonary nodules: When is it lung segmentation and smoothing techniques for inclusion of
cancer. Chest, 143(5 Suppl): 93S–120S. juxtapleural nodules and pulmonary vessels on chest CT
https://doi.org/10.1378/chest.12-2351 images. Biomed Signal Process Control, 13: 62–67.
34. Grigorescu SE, Petkov N, Kruizinga P, 2002, Comparison https://doi.org/10.1016/j.bspc.2014.03.010
of texture features based on Gabor filters. IEEE Trans Image 45. Flohr TG, Schaller S, Stierstorfer K, et al., 2005, Multi-
Process, 11(10): 1160–1167. detector row CT systems and image-reconstruction
https://doi.org/10.1109/TIP.2002.804262 techniques. Radiology, 235(3): 756–773.
35. Gu Y, Kumar V, Hall LO, et al., 2013, Automated delineation https://doi.org/10.1148/radiol.2353040037
of lung tumors from CT images using a single click ensemble 46. Kawane K, Fukuyama H, Yoshida H, et al., 2003, Impaired
segmentation approach. Pattern Recogn, 46(3): 692–702. thymic development in mouse embryos deficient in
36. Gudise VG, Venayagamoorthy VK, 2003, Comparison apoptotic DNA degradation. Nat Immunol, 4(2): 138–144.
of particle swarm optimization and backpropagation https://doi.org/10.1038/ni881
as training algorithms for neural networks. In: Swarm
Intelligence Symposium. New York City: IEEE. 47. Shi J, Malik J, 2000, Normalized cuts and image segmentation.
IEEE Trans Pattern Anal Machine Intell, 22(8): 888–905.
37. Hua P, Song, M, Sonka EA, et al., 2011, Segmentation of
pathological and diseased lung tissue in CT images using a https://doi.org/10.1109/34.868688
graph-search algorithm. In: IEEE International Symposium 48. Bercoff J, Tanter M, Fink M, 2004, Supersonic shear imaging:
on Biomedical Imaging: From Nano to Macro. New York A new technique for soft tissue elasticity mapping. IEEE
City: IEEE. Trans Ultrason Ferroelectr Freq Control, 51(4): 396–409.
38. Jacobs C, Murphy K, Twellmann T, et al., 2011, Computer- https://doi.org/10.1109/tuffc.2004.1295425
Volume 2 Issue 1 (2023) 10 https://doi.org/10.36922/td.317

