Page 34 - TD-2-1
P. 34

Tumor Discovery                                                  An approach for classification of lung nodules



               Med Phys, 30(3): 387–394.                          by fusing shape information in iterative thresholding. IET
                                                                  Comput Vision, 5(3): 185–190.
               https://doi.org/10.1118/1.1543575
                                                               14.  De Nunzio G, Tommasi E, Agrusti A, et al., 2011, Automatic
            3.   Armato SG, Giger ML, Moran CJ, et al., 1999, Computerized   lung segmentation in CT images with accurate handling of
               detection of pulmonary nodules on CT scans. Radiographics,   the Hilar Region. J Digit Imaging, 24(1): 11–27.
               19(5): 1303–1311.
                                                                  https://doi.org/10.1007/s10278-009-9229-1
               https://doi.org/10.1148/radiographics.19.5.g99se181303
                                                               15.  Deep G, Kaur L, Gupta S, 2013, Lung nodule segmentation
            4.   Armato SG 3 , Hadjiiski L, Tourassi GD, et al., 2015, Guest
                         rd
               editorial: Lungx challenge for computerized lung nodule   in CT images using rotation invariant local binary pattern.
               classification: Reflections and lessons learned.  J  Med   Int J Signal Image Process, 4(1): 20.
               Imaging, 2(2): 020103.                          16.  Dehmeshki J, Amin H, Valdivieso M,  et al., 2008,
                                                                  Segmentation of pulmonary nodules in thoracic CT scans:
               https://doi.org/10.1117/1.JMI.2.2.020103
                                                                  A  region growing approach.  IEEE Trans Med Imaging,
            5.   Armato SG, McLennan G, Bidaut L, et al., 2011, The lung   27(4): 467–480.
               image database consortium (LIDC) and image database      https://doi.org/10.1109/TMI.2007.907555
               resource initiative (IDRI): A completed reference database
               of lung nodules on CT scans. Med Phys, 38(2): 915–931.   17.  Dehmeshki J, Ye X, Lin X, et al., 2007, Automated detection
                                                                  of lung nodules in CT images using shape-based genetic
               https://doi.org/10.1118/1.3528204
                                                                  algorithm. Computer Med Imaging Graph, 31(6): 408–417.
            6.   Arumugam MS, Rao MV, 2006, On the performance of the      https://doi.org/10.1016/j.compmedimag.2007.03.002
               particle swarm optimization algorithm with various inertia
               weight variants for computing optimal control of a class of   18.  Delogu P, Cheran S, De Mitri I, et al., 2005, Preprocessing
               hybrid systems. Discrete Dyn Nat Soc., 2006: 079295.   methods for nodule detection in lung CT. In: International
                                                                  Congress Series. vol. 1281. Netherlands: Elsevier.
               https://doi.org/10.1155/DDNS/2006/79295
                                                               19.  Dheepak G, Premkumar S, Ramachandran R, 2015, Lung
            7.   Choi WJ, Choi TS, 2014, Automated pulmonary nodule   Cancer Detection by Using Artificial Neural Network and
               detection based on three-dimensional shape-based   Fuzzy Clustering Method. Int J Power Control Comput, 7:
               feature  descriptor.  Comput Methods Programs Biomed,   24–28.
               113(1): 37–54.
                                                               20.  Doi K, 2007, Computer-aided diagnosis in medical imaging:
               https://doi.org/10.1016/j.cmpb.2013.08.01
                                                                  Historical review, current status and future potential.
            8.   Criminisi A, Shotton J, Bucciarelli S, 2009, Decision forests   Computer Med Imaging Graph, 31(4): 198–211.
               with long-range spatial context for organ localization in CT   21.  Dolejsi  M,  Kybic  J,  Polovincak  M,  et al.,  2009,  The  lung
               volumes. In: MICCAI Workshop on Probabilistic Models   time: Annotated lung nodule dataset and nodule detection
               for Medical Image Analysis. vol. 1. Rochester, Minnesota:   framework. In: SPIE Medical Imaging. Washington USA:
               MICCAI Society.                                    International Society for Optics and Photonics.
            9.   Cross GR, Jain AK, 1983, Markov random field Texture   22.  Elizabeth D, Nehemiah H, Raj CR, et al., 2012, Computer-
               models. IEEE Trans Pattern Anal Mach Intell, 5(1): 25–39.
                                                                  aided diagnosis of lung cancer based on analysis of the
               https://doi.org/10.1109/tpami.1983.4767341         significant slice of chest computed tomography image. IET
                                                                  Image Processing, 6(6): 697–705.
            10.  Da  Silva Sousa  JR, Silva AC,  de Paiva AC,  et al., 2010,
               Methodology for automatic detection of lung nodules   23.  Enquobahrie AA, Reeves AP, Yankelevitz DF, et al., 2007,
               in computerized tomography images.  Comput Methods   Automated detection of small pulmonary nodules in whole
               Programs Biomed, 98(1): 1–14.                      lung CT scans. Acad Radiol, 14(5): 579–593.
               https://doi.org/10.1016/j.cmpb.2009.07.006      24.  Farag A, Abdelmunim H, Graham J, et al., 2012, An AAM
                                                                  based detection approach of lung nodules from LDCT
            11.  Dai S, Lu K, Dong J,  et al., 2015, A novel approach of   scans. In: 9  IEEE International Symposium on Biomedical
                                                                          th
               lung  segmentation on chest  CT  images  using  graph  cuts.   Imaging (ISBI). New York City: IEEE.
               Neurocomputing, 168: 799–807.
                                                               25.  Farag A, Ali A, Graham J,  et al., 2011, Evaluation of
               https://doi.org/10.1016/j.neucom.2015.05.044
                                                                  geometric feature descriptors for detection and classification
            12.  Daneshmand F, Mehrshad N, Massinaei M, 2013, A new   of lung nodules in low dose CT scans of the chest. In: IEEE
               approach for froth image segmentation using fuzzy logic. In:   International Symposium on Biomedical Imaging: From
               First Iranian Conference on Pattern Recognition and Image   Nano to Macro. New York City: IEEE.
               Analysis (PRIA). New York City: IEEE.
                                                               26.  Farag AA, Abdelmunim H, Graham J,  et al., 2011b,
            13.  Dawoud A, 2011, Lung segmentation in chest radiographs   Variational approach for segmentation of lung nodules. In:


            Volume 2 Issue 1 (2023)                         9                           https://doi.org/10.36922/td.317
   29   30   31   32   33   34   35   36   37   38   39