Page 34 - TD-2-1
P. 34
Tumor Discovery An approach for classification of lung nodules
Med Phys, 30(3): 387–394. by fusing shape information in iterative thresholding. IET
Comput Vision, 5(3): 185–190.
https://doi.org/10.1118/1.1543575
14. De Nunzio G, Tommasi E, Agrusti A, et al., 2011, Automatic
3. Armato SG, Giger ML, Moran CJ, et al., 1999, Computerized lung segmentation in CT images with accurate handling of
detection of pulmonary nodules on CT scans. Radiographics, the Hilar Region. J Digit Imaging, 24(1): 11–27.
19(5): 1303–1311.
https://doi.org/10.1007/s10278-009-9229-1
https://doi.org/10.1148/radiographics.19.5.g99se181303
15. Deep G, Kaur L, Gupta S, 2013, Lung nodule segmentation
4. Armato SG 3 , Hadjiiski L, Tourassi GD, et al., 2015, Guest
rd
editorial: Lungx challenge for computerized lung nodule in CT images using rotation invariant local binary pattern.
classification: Reflections and lessons learned. J Med Int J Signal Image Process, 4(1): 20.
Imaging, 2(2): 020103. 16. Dehmeshki J, Amin H, Valdivieso M, et al., 2008,
Segmentation of pulmonary nodules in thoracic CT scans:
https://doi.org/10.1117/1.JMI.2.2.020103
A region growing approach. IEEE Trans Med Imaging,
5. Armato SG, McLennan G, Bidaut L, et al., 2011, The lung 27(4): 467–480.
image database consortium (LIDC) and image database https://doi.org/10.1109/TMI.2007.907555
resource initiative (IDRI): A completed reference database
of lung nodules on CT scans. Med Phys, 38(2): 915–931. 17. Dehmeshki J, Ye X, Lin X, et al., 2007, Automated detection
of lung nodules in CT images using shape-based genetic
https://doi.org/10.1118/1.3528204
algorithm. Computer Med Imaging Graph, 31(6): 408–417.
6. Arumugam MS, Rao MV, 2006, On the performance of the https://doi.org/10.1016/j.compmedimag.2007.03.002
particle swarm optimization algorithm with various inertia
weight variants for computing optimal control of a class of 18. Delogu P, Cheran S, De Mitri I, et al., 2005, Preprocessing
hybrid systems. Discrete Dyn Nat Soc., 2006: 079295. methods for nodule detection in lung CT. In: International
Congress Series. vol. 1281. Netherlands: Elsevier.
https://doi.org/10.1155/DDNS/2006/79295
19. Dheepak G, Premkumar S, Ramachandran R, 2015, Lung
7. Choi WJ, Choi TS, 2014, Automated pulmonary nodule Cancer Detection by Using Artificial Neural Network and
detection based on three-dimensional shape-based Fuzzy Clustering Method. Int J Power Control Comput, 7:
feature descriptor. Comput Methods Programs Biomed, 24–28.
113(1): 37–54.
20. Doi K, 2007, Computer-aided diagnosis in medical imaging:
https://doi.org/10.1016/j.cmpb.2013.08.01
Historical review, current status and future potential.
8. Criminisi A, Shotton J, Bucciarelli S, 2009, Decision forests Computer Med Imaging Graph, 31(4): 198–211.
with long-range spatial context for organ localization in CT 21. Dolejsi M, Kybic J, Polovincak M, et al., 2009, The lung
volumes. In: MICCAI Workshop on Probabilistic Models time: Annotated lung nodule dataset and nodule detection
for Medical Image Analysis. vol. 1. Rochester, Minnesota: framework. In: SPIE Medical Imaging. Washington USA:
MICCAI Society. International Society for Optics and Photonics.
9. Cross GR, Jain AK, 1983, Markov random field Texture 22. Elizabeth D, Nehemiah H, Raj CR, et al., 2012, Computer-
models. IEEE Trans Pattern Anal Mach Intell, 5(1): 25–39.
aided diagnosis of lung cancer based on analysis of the
https://doi.org/10.1109/tpami.1983.4767341 significant slice of chest computed tomography image. IET
Image Processing, 6(6): 697–705.
10. Da Silva Sousa JR, Silva AC, de Paiva AC, et al., 2010,
Methodology for automatic detection of lung nodules 23. Enquobahrie AA, Reeves AP, Yankelevitz DF, et al., 2007,
in computerized tomography images. Comput Methods Automated detection of small pulmonary nodules in whole
Programs Biomed, 98(1): 1–14. lung CT scans. Acad Radiol, 14(5): 579–593.
https://doi.org/10.1016/j.cmpb.2009.07.006 24. Farag A, Abdelmunim H, Graham J, et al., 2012, An AAM
based detection approach of lung nodules from LDCT
11. Dai S, Lu K, Dong J, et al., 2015, A novel approach of scans. In: 9 IEEE International Symposium on Biomedical
th
lung segmentation on chest CT images using graph cuts. Imaging (ISBI). New York City: IEEE.
Neurocomputing, 168: 799–807.
25. Farag A, Ali A, Graham J, et al., 2011, Evaluation of
https://doi.org/10.1016/j.neucom.2015.05.044
geometric feature descriptors for detection and classification
12. Daneshmand F, Mehrshad N, Massinaei M, 2013, A new of lung nodules in low dose CT scans of the chest. In: IEEE
approach for froth image segmentation using fuzzy logic. In: International Symposium on Biomedical Imaging: From
First Iranian Conference on Pattern Recognition and Image Nano to Macro. New York City: IEEE.
Analysis (PRIA). New York City: IEEE.
26. Farag AA, Abdelmunim H, Graham J, et al., 2011b,
13. Dawoud A, 2011, Lung segmentation in chest radiographs Variational approach for segmentation of lung nodules. In:
Volume 2 Issue 1 (2023) 9 https://doi.org/10.36922/td.317

