Page 61 - TD-4-1
P. 61

Tumor Discovery                                                  Drug repurposing for pancreatic cancer via AI



              Next, with N representing microarray data samples, we   constraints to ensure that the degrading effects of miRNAs
            can express these as linear Equations V–VIII:      on post-transcriptional genes, lncRNAs, and miRNAs
                                                               are negative. The parameter estimation problem for the

                                                         GWGENs of PDAC and non-PDAC can be solved by the
                          1
                                       1
               w
              p 1      w       w                  following constrained least-squares parameter estimation




              p  2    2          2        (IX)    problem equations:
              w        w      w    w
                                                       ˆ         1          2
                                                         Θ = argmin  Φ ⋅Θ − P w 2                 (XVII)
                                                                                w
                                                                             w
                                                                 w
                                     N
                N

                          N N
                        w
              p             w                         Θ w  2
              w
              for w =1,2…,W-1,W, n = 1,2…,N-1,N                 ˆ         1          2
                                                               Θ = argmin  Φ ⋅Θ −G  x 2                (XVIII)
                                                                                x
                                                                             x
                                                                 x
                                                               Θ x  2

                          1
                                      1
              g 1      x       x
               x


              g  2    2          2         X)                                       0


              x        x      x    x                           0   0 0    0 1   0        0
                             

                                                                                  0  x


                N

                                    N
                       x
              g       NN     x                    subject to
              x
                                                                                 0 0
                                                                                         0 0
                                                                            0              1         0


              for x = 1,2…,X-1,X, n = 1,2…,N-1,N
                                                                             S x    U x     V x


                                      1
                         1
                                                                ˆ
              y
             l 1      y       y                   Θ = argmin 1 Φ ⋅Θ − L  2                  (XIX)

             l 2      2          2        (XI)      y    Θ y  2  y  y  y 2



              y        y      y    y
                                                                                       0


                N
                                    N

                       y
              y
              l       NN     y                              0   0 0    0 1   0       0




              for y =1,2…,Y-1,Y, n = 1,2…,N-1,N                  subject to    0   0 0   0 0   1 0  y

                                                                                                           0



                                                                       S y   U y     V y
                                      1
                          1
               z
             m 1      z       z

             m 2      2       2            (XII)               1




                                                                ˆ
              z       z      z    z                Θ = argmin  Φ ⋅Θ − M  2                   (XX)
                                                        z    Θ z  2  z  z  z 2

                                     N



                        z
               z
              mN      NN     z                                                     0

              for z = 1,2…,Z-1,Z, n = 1,2…,N-1,N                           0   0 0    0 1   0        0


              Further Equations IX–XII can be represented by the   subject to            0  z


            following algebraic equations individually:                    0   0 0    0 0   1         0



            P     w    w  for w 12,  , W 1, W    (XIII)             S z   U z     V z
             w
                  w
            G        for x 12,  , X 1, X    (XIV)
                  x
                         x
                     x
             x
                                                                 Given that the regulatory effects of miRNAs on post-
            L    y    y  for y 12,  , Y 1, Y  (XV)    transcriptional genes, lncRNAs, and other miRNAs must
                  y
             y
                                                               be negative, we utilized the MATLAB Optimization
            M     z    z  for z 12,  , Z 1, Z  (XVI)  Toolbox to solve the constrained least-squares parameter
                  z
              z
              where Φ w is the linear regression matrix for proteins,   estimation problems with their added constraints in
            Φ x is the linear regression matrix for genes, Φ y is the   Equations XVII–XX. This approach allowed us to derive
            linear regression matrix for lncRNAs, and Φ z is the linear   optimal estimated parameter vectors for PPIs, as well
            regression matrix for miRNAs.                      as for gene, lncRNA, and miRNA regulations within the
              Next, we employed a constrained linear least-squares   GWGENs for both PDAC and non-PDAC.
            parameter estimation method to estimate parameter    To address the issue of numerous false positive
            vectors Φ w, Φ x, Φ y and Φ z. Specifically, we imposed   interactions identified among the candidate GWGENs, we
            Volume 4 Issue 1 (2025)                         53                                doi: 10.36922/td.4709
   56   57   58   59   60   61   62   63   64   65   66