Page 98 - TD-4-2
P. 98

Tumor Discovery                                                SNPs rs9929218 and rs6983267 in Kurdish CRC



               doi: 10.18632/oncotarget.18960                  16.  Lu Y, Wen W, Long J,  et al. Large-scale genome-
                                                                  wide association study in East Asians identifies new
            6.   Arıkan Söylemez ESS, Söylemez Z, Çilekar M, et al. Investigation
               of the expression levels of CDH1, FHIT, PTEN, and TTPAL   susceptibility  loci  for  colorectal  cancer.  Gastroenterology.
               genes in colorectal tumors. Turk J Med Sci. 2022;52(1):124-130.  2019;156(5):1455-1466.
               doi: 10.3906/sag-2110-296                          doi: 10.1053/j.gastro.2018.12.004
            7.   Law PJ, Timofeeva M, Fernandez-Rozadilla C,  et al.   17.  Kaur A, Jalali S, Chattopadhyay I. Role of CDH1 gene
               Association analyses identify 31 new risk loci for colorectal   in colorectal cancer: From molecular mechanisms to
               cancer susceptibility. Nat Commun. 2019;10(1):2154.  therapeutic implications. Cancer Lett. 2022;529:178-191.
               doi: 10.1038/s41467-019-09775-w                    doi: 10.1016/j.canlet.2021.10.007
            8.   Tenesa A, Farrington SM, Prendergast JG, et al. Genome-  18.  Ji Y, Liu K, Zhang W, et al. Downregulation of E-cadherin
               wide association study identifies colorectal cancer   promotes  CRC  progression.  J  Exp Clin Cancer Res.
               susceptibility loci on chromosomes 10p14 and 8q23.3. Nat   2019;38(1):318.
               Genet. 2008;40(5):631-637.                         doi: 10.1186/s13046-019-1336-2
               doi: 10.1038/ng.133                             19.  Peters U, Jiao S, Schumacher FR,  et al. Identification of
            9.   Takatsuno Y, Mimori K, Yamamoto K, et al. The rs6983267   genetic susceptibility loci for CRC.  Gastroenterology.
               SNP is associated with MYC transcription efficiency, which   2013;144(4):799-807.e24.
               promotes progression and worsens prognosis of colorectal      doi: 10.1053/j.gastro.2012.12.020
               cancer. Ann Surg Oncol. 2013;20(4):1395-1402.
                                                               20.  Houlston RS, Cheadle J, Dobbins SE,  et al. Meta-analysis
               doi: 10.1245/s10434-012-2657-z
                                                                  of genome-wide association data identifies four new
            10.  Shaker  OG,  Senousy  MA,  Elbaz  EM.  Association  of   susceptibility loci  for colorectal cancer.  Nat Genet.
               rs6983267 at 8q24, HULC rs7763881 polymorphisms and   2010;42(11):973-977.
               serum lncRNAs CCAT2 and HULC with colorectal cancer      doi: 10.1038/ng.670
               in Egyptian patients. Sci Rep. 2017;7:16246.
                                                               21.  Zhang B, Jia WH, Matsuo K,  et al. Large-scale genetic
               doi: 10.1038/s41598-017-16500-4
                                                                  study in East Asians identifies six new loci associated with
            11.  Tuupanen S, Turunen M, Lehtonen R, et al. The common   colorectal cancer risk. Nat Genet. 2014;46(6):533-542.
               colorectal cancer predisposition SNP rs6983267 at
               chromosome  8q24  confers  potential to  enhanced Wnt      doi: 10.1038/ng.2985
               signaling. Nat Genet. 2009;41(8):885-890.       22.  Chang-Claude J, Hoffmeister M, Brenner H, et al. Genome-
               doi: 10.1038/ng.406                                wide association study identifies three new colorectal cancer
                                                                  susceptibility loci. Nat Genet. 2015;47(12):1427-1432.
            12.  Shah MY, Ferracin M, Pileczki V, et al. Cancer-associated
               rs6983267 SNP and its accompanying long noncoding RNA      doi: 10.1038/ng.3416
               CCAT2 induce myeloid malignancies via unique SNP-  23.  Dunlop MG, Dobbins SE, Farrington SM, et al. Common
               specific RNA mutations. Genome Res. 2018;28(4):432-447.  variation near CDKN1A, POLD3 and SHROOM2
               doi: 10.1101/gr.225128.117                         influences colorectal cancer risk. Nat Genet. 2012;44(7):770-
                                                                  776.  doi:10.1038/ng.2293
            13.  Carethers JM, Doubeni CA. Colorectal cancer disparity
               in African Americans: Risk factors and characteristics.   24.  Zhang Y, Wang J, Wu M, et al. Genetic polymorphisms in
               Gastroenterology. 2019;158(4):938-951.             E-cadherin and risk of gastric cancer: A  meta-analysis.
                                                                  World J Gastroenterol. 2011;17(10):1182-1189.
               doi: 10.1053/j.gastro.2019.01.035
                                                                  doi: 10.3748/wjg.v17.i10.1182
            14.  Kupfer SS, Anderson JR, Hooker S,  et al. Genetic
               heterogeneity in colorectal cancer associations between   25.  Cao H, Xu Y, Zhang Y,  et al. E-cadherin polymorphism
               African and European Americans.  Gastroenterology.   rs9929218 and cancer risk: Evidence from a meta-analysis.
               2010;139(5):1677-85, 1685.e1-8.                    PLoS One. 2013;8(6):e67148.
               doi: 10.1053/j.gastro.2010.07.040                  doi: 10.1371/journal.pone.0067148
            15.  Huyghe JR, Bien SA, Harrison TA, et al. Genetic architecture   26.  Tenesa A, Dunlop MG. New insights into the aetiology of
               of colorectal cancer in Europeans and Latinos. Nat Genet.   colorectal cancer from genome-wide association studies.
               2019;51(4):672-684.                                Nat Rev Genet. 2009;10(6):353-358.
               doi: 10.1038/s41588-019-0371-8                     doi: 10.1038/nrg2595



            Volume 4 Issue 2 (2025)                         90                           doi: 10.36922/TD025110021
   93   94   95   96   97   98   99   100   101   102   103