Page 100 - AIH-1-2
P. 100

Artificial Intelligence in Health                               Combating XDR-bacteria as we approach 2050



               resistance drivers: An ecological country-level study   42.  De Luca S, Digilio G, Verdoliva V, Tovillas P, Jiménez-Osés G,
               at the human-animal interface.  Lancet Planet Health.   Peregrina JM. Lanthionine peptides by S-alkylation with
               2023;7(4):e291-e303.                               substituted cyclic sulfamidates promoted by activated
                                                                  molecular sieves: Effects of the sulfamidate structure on the
               doi: 10.1016/S2542-5196(23)00026-8
                                                                  yield. J Org Chem. 2019;84(22):14957-14964.
            33.  Tanimura T, Jaramillo E, Weil D, Raviglione M, Lönnroth K.
               Financial burden for tuberculosis patients in low-and      doi: 10.1021/acs.joc.9b02306
               middle-income countries: A systematic review. Eur Respir   43.  Dickman R, Mitchell SA,  Figueiredo AM, Hansen  DF,
               J. 2014;43(6):1763-1775.                           Tabor AB. Molecular recognition of lipid II by Lantibiotics:
                                                                  Synthesis and conformational studies of analogues
               doi: 10.1183/09031936.00193413
                                                                  of nisin and mutacin rings A and B.  J  Org Chem.
            34.  Phan J, Nair D, Jain S, et al. Alterations in gut microbiome   2019;84(18):11493-11512.
               composition and function in irritable bowel syndrome and
               increased probiotic abundance with daily supplementation.      doi: 10.1021/acs.joc.9b01253
               mSystems. 2021;6(6):e01215-21.                  44.  Chen H, Zhang Y, Li QQ, Zhao YF, Chen YX, Li YM. De
                                                                  novo design to synthesize lanthipeptides involving cascade
               doi: 10.1128/mSystems.01215-21
                                                                  cysteine reactions: SapB Synthesis as an example.  J  Org
            35.  De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C.   Chem. 2018;83(14):7528-7533.
               Antimicrobial resistance: Two-component regulatory
               systems and multidrug efflux pumps.  Antibiotics  (Basel).      doi: 10.1021/acs.joc.8b00259
               2023;12(6):965.                                 45.  Ma C, Peng Y, Li H, Chen W. Organ-on-a-Chip: A  new
                                                                  paradigm  for  drug  development.  Trends Pharmacol Sci.
               doi: 10.3390/antibiotics12060965
                                                                  2021;42(2):119-133.
            36.  Alock BP, Raphenya AR, Lau TTY,  et  al. CARD 2020:
               Antibiotic  resistome  surveillance  with  the  comprehensive      doi: 10.1016/j.tips.2020.11.009
               antibiotic  resistance  database.  Nucleic Acids Res.   46.  Najmi  A,  Javed  SA,  Al  Bratty  M,  Alhazmi  HA.  Modern
               2020;48:D517-D525.                                 approaches  in  the  discovery  and  development  of  plant-
                                                                  based natural products and their analogues as potential
               doi: 10.1093/nar/gkz935
                                                                  therapeutic agents. Molecules. 2022;27(2):349.
            37.  Barbour A, Smith L, Oveisi M,  et al. Discovery of
               phosphorylated lantibiotics with proimmune activity that      doi: 10.3390/molecules27020349
               regulate the oral microbiome.  Proc Natl Acad Sci U S A.   47.  Sivadas N, Kaul G, Akhir A,  et al. Naturally derived
               2023;120(22):e2219392120.                          malabaricone B as a promising bactericidal candidate
                                                                  targeting multidrug-resistant  Staphylococcus aureus also
               doi: 10.1073/pnas.2219392120
                                                                  possess  synergistic  interactions  with  clinical  antibiotics.
            38.  Pei ZF, Zhu L, Sarksian R, van der Donk WA, Nair SK.   Antibiotics (Basel). 2023;12(10):1483.
               Class  V Lanthipeptide cyclase directs the biosynthesis
               of a stapled peptide natural product.  J  Am Chem Soc.      doi: 10.3390/antibiotics12101483
               2022;144(38):17549-17557.                       48.  Torres MT, de la Fuente-Nunez C. Toward computer-made
                                                                  artificial antibiotics. Curr Opin Microbiol. 2019;51:30-38.
               doi: 10.1021/jacs.2c06808
                                                                  doi: 10.1016/j.mib.2019.03.004
            39.  Tovillas P, Navo CD, Oroz P, et al. Synthesis of β2,2-amino
               acids by stereoselective alkylation of isoserine derivatives   49.  Torres MDT, Cao J, Franco OL, Lu TK, de la Fuente-
               followed by nucleophilic ring opening of quaternary   Nunez C. Synthetic biology and computer-based
               sulfamidates. J Org Chem. 2022;87(13):8730-8743.   frameworks for antimicrobial peptide discovery.  ACS
                                                                  Nano. 2021;15(2):2143-2164.
               doi: 10.1021/acs.joc.2c01034
                                                                  doi: 10.1021/acsnano.0c09509
            40.  Bothwell IR, Caetano T, Sarksian R, Mendo S, van der
               Donk WA. Structural analysis of class I Lanthipeptides from   50.  Aronica PGA, Reid LM, Desai N,  et al. Computational
               Pedobacter lusitanus NL19 reveals an unusual ring pattern.   methods and tools in antimicrobial peptide research. J Chem
               ACS Chem Biol. 2021;16(6):1019-1029.               Inf Model. 2021;61(7):3172-3196.
               doi: 10.1021/acschembio.1c00106                    doi: 10.1021/acs.jcim.1c00175
            41.  Joaquin D, Lee MA, Kastner DW,  et al. Impact of   51.  Gray  DA,  Wenzel  M.  Multitarget  approaches
               dehydroamino acids on the structure and stability of incipient   against multiresistant superbugs.  ACS Infect Dis.
               3 -helical peptides. J Org Chem. 2020;85(3):1601-1613.  2020;6(6):1346-1365.
                10
               doi: 10.1021/acs.joc.9b02747                       doi: 10.1021/acsinfecdis.0c00001



            Volume 1 Issue 2 (2024)                         94                               doi: 10.36922/aih.2284
   95   96   97   98   99   100   101   102   103   104   105