Page 100 - AIH-1-2
P. 100
Artificial Intelligence in Health Combating XDR-bacteria as we approach 2050
resistance drivers: An ecological country-level study 42. De Luca S, Digilio G, Verdoliva V, Tovillas P, Jiménez-Osés G,
at the human-animal interface. Lancet Planet Health. Peregrina JM. Lanthionine peptides by S-alkylation with
2023;7(4):e291-e303. substituted cyclic sulfamidates promoted by activated
molecular sieves: Effects of the sulfamidate structure on the
doi: 10.1016/S2542-5196(23)00026-8
yield. J Org Chem. 2019;84(22):14957-14964.
33. Tanimura T, Jaramillo E, Weil D, Raviglione M, Lönnroth K.
Financial burden for tuberculosis patients in low-and doi: 10.1021/acs.joc.9b02306
middle-income countries: A systematic review. Eur Respir 43. Dickman R, Mitchell SA, Figueiredo AM, Hansen DF,
J. 2014;43(6):1763-1775. Tabor AB. Molecular recognition of lipid II by Lantibiotics:
Synthesis and conformational studies of analogues
doi: 10.1183/09031936.00193413
of nisin and mutacin rings A and B. J Org Chem.
34. Phan J, Nair D, Jain S, et al. Alterations in gut microbiome 2019;84(18):11493-11512.
composition and function in irritable bowel syndrome and
increased probiotic abundance with daily supplementation. doi: 10.1021/acs.joc.9b01253
mSystems. 2021;6(6):e01215-21. 44. Chen H, Zhang Y, Li QQ, Zhao YF, Chen YX, Li YM. De
novo design to synthesize lanthipeptides involving cascade
doi: 10.1128/mSystems.01215-21
cysteine reactions: SapB Synthesis as an example. J Org
35. De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Chem. 2018;83(14):7528-7533.
Antimicrobial resistance: Two-component regulatory
systems and multidrug efflux pumps. Antibiotics (Basel). doi: 10.1021/acs.joc.8b00259
2023;12(6):965. 45. Ma C, Peng Y, Li H, Chen W. Organ-on-a-Chip: A new
paradigm for drug development. Trends Pharmacol Sci.
doi: 10.3390/antibiotics12060965
2021;42(2):119-133.
36. Alock BP, Raphenya AR, Lau TTY, et al. CARD 2020:
Antibiotic resistome surveillance with the comprehensive doi: 10.1016/j.tips.2020.11.009
antibiotic resistance database. Nucleic Acids Res. 46. Najmi A, Javed SA, Al Bratty M, Alhazmi HA. Modern
2020;48:D517-D525. approaches in the discovery and development of plant-
based natural products and their analogues as potential
doi: 10.1093/nar/gkz935
therapeutic agents. Molecules. 2022;27(2):349.
37. Barbour A, Smith L, Oveisi M, et al. Discovery of
phosphorylated lantibiotics with proimmune activity that doi: 10.3390/molecules27020349
regulate the oral microbiome. Proc Natl Acad Sci U S A. 47. Sivadas N, Kaul G, Akhir A, et al. Naturally derived
2023;120(22):e2219392120. malabaricone B as a promising bactericidal candidate
targeting multidrug-resistant Staphylococcus aureus also
doi: 10.1073/pnas.2219392120
possess synergistic interactions with clinical antibiotics.
38. Pei ZF, Zhu L, Sarksian R, van der Donk WA, Nair SK. Antibiotics (Basel). 2023;12(10):1483.
Class V Lanthipeptide cyclase directs the biosynthesis
of a stapled peptide natural product. J Am Chem Soc. doi: 10.3390/antibiotics12101483
2022;144(38):17549-17557. 48. Torres MT, de la Fuente-Nunez C. Toward computer-made
artificial antibiotics. Curr Opin Microbiol. 2019;51:30-38.
doi: 10.1021/jacs.2c06808
doi: 10.1016/j.mib.2019.03.004
39. Tovillas P, Navo CD, Oroz P, et al. Synthesis of β2,2-amino
acids by stereoselective alkylation of isoserine derivatives 49. Torres MDT, Cao J, Franco OL, Lu TK, de la Fuente-
followed by nucleophilic ring opening of quaternary Nunez C. Synthetic biology and computer-based
sulfamidates. J Org Chem. 2022;87(13):8730-8743. frameworks for antimicrobial peptide discovery. ACS
Nano. 2021;15(2):2143-2164.
doi: 10.1021/acs.joc.2c01034
doi: 10.1021/acsnano.0c09509
40. Bothwell IR, Caetano T, Sarksian R, Mendo S, van der
Donk WA. Structural analysis of class I Lanthipeptides from 50. Aronica PGA, Reid LM, Desai N, et al. Computational
Pedobacter lusitanus NL19 reveals an unusual ring pattern. methods and tools in antimicrobial peptide research. J Chem
ACS Chem Biol. 2021;16(6):1019-1029. Inf Model. 2021;61(7):3172-3196.
doi: 10.1021/acschembio.1c00106 doi: 10.1021/acs.jcim.1c00175
41. Joaquin D, Lee MA, Kastner DW, et al. Impact of 51. Gray DA, Wenzel M. Multitarget approaches
dehydroamino acids on the structure and stability of incipient against multiresistant superbugs. ACS Infect Dis.
3 -helical peptides. J Org Chem. 2020;85(3):1601-1613. 2020;6(6):1346-1365.
10
doi: 10.1021/acs.joc.9b02747 doi: 10.1021/acsinfecdis.0c00001
Volume 1 Issue 2 (2024) 94 doi: 10.36922/aih.2284

