Page 33 - AIH-1-2
P. 33

Artificial Intelligence in Health                                LLMs-Healthcare: Application and challenges



               2023;15:e37938.                                 24.  Cai  H,  Huang  X,  Liu  Z,  et al.  Exploring Multimodal
                                                                  Approaches for Alzheimer’s Disease Detection Using Patient
               doi: 10.7759/cureus.37938
                                                                  Speech Transcript and Audio Data. arXiv:2307.02514 [arXiv
            13.  Haemmerli J, Sveikata L, Nouri A, et al. ChatGPT in glioma   Preprint]; 2023.
               adjuvant therapy decision making: Ready to assume the role
               of a doctor in the tumour board? BMJ Health Care Inform.   25.  Feng Y, Wang J, Gu X, Xu X, Zhang M.  Large  Language
               2023;30:e100775.                                   Models Improve Alzheimer’s Disease Diagnosis Using Multi-
                                                                  modality Data. arXiv:2305.19280 [arXiv Preprint]; 2023.
               doi: 10.1136/bmjhci-2023-100775
                                                               26.  Ying Y, Yang T, Zhou H. Multimodal fusion for Alzheimer’s
            14.  Chen S, Kann BH, Foote MB,  et al. Use of artificial   disease recognition. Appl Intell. 2023;53:16029-16040.
               intelligence chatbots for cancer treatment information.
               JAMA Oncol. 2023;9:1459-1462.                      doi: 10.1007/s10489-022-04255-z
               doi: 10.1001/jamaoncol.2023.2954                27.  Mohammad-Rahimi H, Motamedian SR, Rohban MH, et al.
                                                                  Deep learning for caries detection: A  systematic review.
            15.  Yakupu A, Aimaier R, Yuan B, et al. The burden of skin and   J Dent. 2022;122:104115.
               subcutaneous diseases: Findings from the global burden of
               disease study 2019. Front Public Health. 2023;11:1145513.     doi: 10.1016/j.jdent.2022.104115
               doi: 10.3389/fpubh.2023.1145513                 28.  Urban R, Haluzová, S, Strunga M, et al. AI-assisted CBCT
                                                                  data management in modern dental practice: Benefits,
            16.  Urban K, Chu S, Giesey RL, et al. Burden of skin disease and   limitations and innovations. Electronics. 2023;12:1710.
               associated socioeconomic status in Asia: A cross-sectional
               analysis from the global burden of disease study 1990-2017.      doi: 10.3390/electronics12071710
               JAAD Int. 2020;2:40-50.                         29.  Huang H, Zheng O, Wang D, et al. ChatGPT for shaping
               doi: 10.1016/j.jdin.2020.10.006                    the future of dentistry: The potential of multi-modal large
                                                                  language model. Int J Oral Sci. 2023;15(1):29.
            17.  Burlando M, Muracchioli A, Cozzani E, Parodi A. Psoriasis,
               vitiligo, and biologic therapy: Case report and narrative      doi: 10.1038/s41368-023-00239-y
               review. Case Rep Dermatol. 2021;13:372-378.
                                                               30.  Galatzer-Levy  IR,  McDuff  DN,  Natarajan  V,
               doi: 10.1159/000514198                             Karthikesalingam A, Malgaroli M. The capability of large
                                                                  language models to measure psychiatric functioning. 2023.
            18.  Zhou J, He X, Sun L,  et al. SkinGPT-4: An interactive   arXiv preprint.
               dermatology diagnostic system with visual large language
               model. 2023. medRxiv preprint.                  31.  Xu X, Yao B, Dong Y,  et al.  Leveraging Large Language
                                                                  Models for Mental Health Prediction via Online Text Data.
            19.  Dugger BN, Dickson DW. Pathology of neurodegenerative
               disease. Cold Spring Harb Perspect Biol. 2017;9:a028035.  arXiv:2307.14385 [arXiv Preprint]; 2023.
                                                               32.  Ma Z, Mei Y, Su Z. Understanding the benefits and challenges
               doi: 10.1101/cshperspect.a028035
                                                                  of using large language model-based conversational agents
            20.  Koga S, Martin NB, Dickson DW. Evaluating the performance   for mental well-being support.  AMIA  Annu  Symp  Proc.
               of large language models: ChatGPT and Google bard in   2024;2023:1105-1114.
               generating differential diagnoses in clinicopathological
               conferences of neurodegenerative disorders. Brain Pathol.   33.  Kjell O, Kjell K, Schwartz HA. AI-based Large Language
               2023.                                              Models are Ready to Transform Psychological Health
                                                                  Assessment; 2023. PsyArXiv.
               doi: 10.1111/bpa.13207
                                                               34.  Wu S, Koo M, Blum, L,  et al.  A  Comparative Study of
            21.  Agbavor F, Liang H. Predicting dementia from spontaneous   Open-source Large Language Models, GPT-4 and Claude 2:
               speech  using  large  language  models.  PLOS  Digit  Health.   Multiple-choice Test Taking in Nephrology. arxiv: 2308.04709
               2022;1(12):e0000168.                               [arxiv Preprint]; 2023.
               doi: 10.1371/journal.pdig.0000168               35.  Lahat A, Shachar E, Avidan B, Glicksberg B, Klang
            22.  Luz S, Haider F, de la Fuente S, Fromm D, MacWhinney B.   E.  Evaluating  the  utility  of  a  large  language  model  in
               Detecting Cognitive Decline Using Speech Only: The ADReSSo   answering common patients’ gastrointestinal health-
               Challenge. arXiv: 210409356 [arXiv Preprint]; 2021.  related questions: Are we there yet?  Diagnostics  (Basel).
                                                                  2023;13:1950.
            23.  Mao C, Xu J, Rasmussen L,  et al. AD-BERT: Using pre-
               trained language model to predict the progression from      doi: 10.3390/diagnostics13111950
               mild cognitive impairment to Alzheimer’s disease. J Biomed   36.  Goktas P, Karakaya G, Kalyoncu AF, Damadoglu E. Artificial
               Inform. 2023;14:104442.
                                                                  intelligence Chatbots in allergy and immunology practice:
               doi: 10.1016/j.jbi.2023.104442                     Where have we been and where are we going? J Allergy Clin


            Volume 1 Issue 2 (2024)                         27                               doi: 10.36922/aih.2558
   28   29   30   31   32   33   34   35   36   37   38