Page 33 - AIH-1-2
P. 33
Artificial Intelligence in Health LLMs-Healthcare: Application and challenges
2023;15:e37938. 24. Cai H, Huang X, Liu Z, et al. Exploring Multimodal
Approaches for Alzheimer’s Disease Detection Using Patient
doi: 10.7759/cureus.37938
Speech Transcript and Audio Data. arXiv:2307.02514 [arXiv
13. Haemmerli J, Sveikata L, Nouri A, et al. ChatGPT in glioma Preprint]; 2023.
adjuvant therapy decision making: Ready to assume the role
of a doctor in the tumour board? BMJ Health Care Inform. 25. Feng Y, Wang J, Gu X, Xu X, Zhang M. Large Language
2023;30:e100775. Models Improve Alzheimer’s Disease Diagnosis Using Multi-
modality Data. arXiv:2305.19280 [arXiv Preprint]; 2023.
doi: 10.1136/bmjhci-2023-100775
26. Ying Y, Yang T, Zhou H. Multimodal fusion for Alzheimer’s
14. Chen S, Kann BH, Foote MB, et al. Use of artificial disease recognition. Appl Intell. 2023;53:16029-16040.
intelligence chatbots for cancer treatment information.
JAMA Oncol. 2023;9:1459-1462. doi: 10.1007/s10489-022-04255-z
doi: 10.1001/jamaoncol.2023.2954 27. Mohammad-Rahimi H, Motamedian SR, Rohban MH, et al.
Deep learning for caries detection: A systematic review.
15. Yakupu A, Aimaier R, Yuan B, et al. The burden of skin and J Dent. 2022;122:104115.
subcutaneous diseases: Findings from the global burden of
disease study 2019. Front Public Health. 2023;11:1145513. doi: 10.1016/j.jdent.2022.104115
doi: 10.3389/fpubh.2023.1145513 28. Urban R, Haluzová, S, Strunga M, et al. AI-assisted CBCT
data management in modern dental practice: Benefits,
16. Urban K, Chu S, Giesey RL, et al. Burden of skin disease and limitations and innovations. Electronics. 2023;12:1710.
associated socioeconomic status in Asia: A cross-sectional
analysis from the global burden of disease study 1990-2017. doi: 10.3390/electronics12071710
JAAD Int. 2020;2:40-50. 29. Huang H, Zheng O, Wang D, et al. ChatGPT for shaping
doi: 10.1016/j.jdin.2020.10.006 the future of dentistry: The potential of multi-modal large
language model. Int J Oral Sci. 2023;15(1):29.
17. Burlando M, Muracchioli A, Cozzani E, Parodi A. Psoriasis,
vitiligo, and biologic therapy: Case report and narrative doi: 10.1038/s41368-023-00239-y
review. Case Rep Dermatol. 2021;13:372-378.
30. Galatzer-Levy IR, McDuff DN, Natarajan V,
doi: 10.1159/000514198 Karthikesalingam A, Malgaroli M. The capability of large
language models to measure psychiatric functioning. 2023.
18. Zhou J, He X, Sun L, et al. SkinGPT-4: An interactive arXiv preprint.
dermatology diagnostic system with visual large language
model. 2023. medRxiv preprint. 31. Xu X, Yao B, Dong Y, et al. Leveraging Large Language
Models for Mental Health Prediction via Online Text Data.
19. Dugger BN, Dickson DW. Pathology of neurodegenerative
disease. Cold Spring Harb Perspect Biol. 2017;9:a028035. arXiv:2307.14385 [arXiv Preprint]; 2023.
32. Ma Z, Mei Y, Su Z. Understanding the benefits and challenges
doi: 10.1101/cshperspect.a028035
of using large language model-based conversational agents
20. Koga S, Martin NB, Dickson DW. Evaluating the performance for mental well-being support. AMIA Annu Symp Proc.
of large language models: ChatGPT and Google bard in 2024;2023:1105-1114.
generating differential diagnoses in clinicopathological
conferences of neurodegenerative disorders. Brain Pathol. 33. Kjell O, Kjell K, Schwartz HA. AI-based Large Language
2023. Models are Ready to Transform Psychological Health
Assessment; 2023. PsyArXiv.
doi: 10.1111/bpa.13207
34. Wu S, Koo M, Blum, L, et al. A Comparative Study of
21. Agbavor F, Liang H. Predicting dementia from spontaneous Open-source Large Language Models, GPT-4 and Claude 2:
speech using large language models. PLOS Digit Health. Multiple-choice Test Taking in Nephrology. arxiv: 2308.04709
2022;1(12):e0000168. [arxiv Preprint]; 2023.
doi: 10.1371/journal.pdig.0000168 35. Lahat A, Shachar E, Avidan B, Glicksberg B, Klang
22. Luz S, Haider F, de la Fuente S, Fromm D, MacWhinney B. E. Evaluating the utility of a large language model in
Detecting Cognitive Decline Using Speech Only: The ADReSSo answering common patients’ gastrointestinal health-
Challenge. arXiv: 210409356 [arXiv Preprint]; 2021. related questions: Are we there yet? Diagnostics (Basel).
2023;13:1950.
23. Mao C, Xu J, Rasmussen L, et al. AD-BERT: Using pre-
trained language model to predict the progression from doi: 10.3390/diagnostics13111950
mild cognitive impairment to Alzheimer’s disease. J Biomed 36. Goktas P, Karakaya G, Kalyoncu AF, Damadoglu E. Artificial
Inform. 2023;14:104442.
intelligence Chatbots in allergy and immunology practice:
doi: 10.1016/j.jbi.2023.104442 Where have we been and where are we going? J Allergy Clin
Volume 1 Issue 2 (2024) 27 doi: 10.36922/aih.2558

