Page 104 - AIH-1-3
P. 104

Artificial Intelligence in Health                                 ISM: A new multi-view space-learning model




            Table 1. Metrics comparing latent‑space methods on five datasets
            Dataset   Method  Nr classes Embedding (ISM) rank  Proportion of   Purity ARI NMI FMS Sparsity Specificity Overall
                                                        classes retrieved
            UCI DIGITS MVMDS     10   10                    0.70     0.41  0.49  0.61  0.54  0.62  0.21  0.51
                      ISM        10   (9,10)                1.00     0.58  0.57  0.67  0.62  0.87  0.43  0.68
                      ILSM       10   (10,10)               0.80     0.41  0.45  0.58  0.51  0.50  0.48  0.53
                      GFA        10   10                    0.90     0.45  0.48  0.61  0.54  0.32  0.15  0.49
                      MOFA+      10   10                    0.70     0.29  0.36  0.46  0.44  0.34  0.13  0.39
                      MOWGLI     10   10                    0.80     0.46  0.51  0.65  0.57  0.60  0.58  0.60
                      PCA        10   10                    0.40     0.19  0.44  0.57  0.51  0.73  0.38  0.46
                      NMF        10   10                    0.90     0.58  0.59  0.68  0.63  0.46  0.34  0.60
            Signature 915 MVMDS  16   10                    0.75     0.70  0.97  0.95  0.97  0.56  0.21  0.73
                      ISM        16   (16,16)               0.88     0.72  0.98  0.95  0.98  0.93  0.83  0.90
                      ILSM       16   (16,16)               0.75     0.62  0.93  0.91  0.94  0.93  0.74  0.83
                      GFA        16   12                    0.81     0.73  0.98  0.96  0.98  0.30  0.08  0.69
                      MOFA+      16   13                    0.81     0.76  0.94  0.93  0.95  0.56  0.19  0.73
                      MOWGLI     16   16                    0.63     0.44  0.87  0.89  0.89  0.89  0.82  0.77
                      PCA        16   10                    0.56     0.40  0.94  0.89  0.95  0.57  0.23  0.65
                      NMF        16   16                    0.81     0.55  0.94  0.89  0.95  0.91  0.88  0.85
                      NTF        16   16                    0.69     0.52  0.94  0.89  0.95  0.98  0.75  0.82
            Reuters   MVMDS      6    4                     0.50     0.19  0.19  0.30  0.37  0.93  0.28  0.39
                      ISM        6    (6,6)                 0.50     0.23  0.25  0.34  0.41  0.98  0.37  0.44
                      ILSM       6    (6,6)                 0.33     0.16  0.21  0.31  0.39  0.97  0.30  0.38
                      GFA        6    3                     0.17     0.03  0.01  0.09  0.39  0.94  0.21  0.26
                      MOFA+      6    -                      -        -    -    -    -     -      -       -
                      MOWGLI     6    6                     0.08     0.04  0.01  0.20  0.28  0.10  0.86  0.22
                      NMF        6    6                     0.33     0.14  0.21  0.32  0.41  0.96  0.36  0.39
            Prokaryotic  MVMDS   4    4                     0.50     0.22  0.18  0.23  0.50  0.68  0.67  0.43
                      ISM        4    (4,4)                 0.25     0.14  0.00  0.00  0.63  0.66  0.88  0.37
                      ILSM       4    (4,4)                 0.75     0.36  0.28  0.31  0.54  0.55  0.88  0.52
                      GFA        4    6                      -        -    -    -    -     -      -       -
                      MOFA+      4    4                     0.75     0.36  0.29  0.32  0.55  0.53  0.42  0.46
                      MOWGLI     4    4                     0.25     0.14  0.10  0.10  0.60  0.39  0.63  0.32
                      NMF        4    4                     0.25     0.14  0.00  0.00  0.63  0.47  0.88  0.34
            TEA-seq   MVMDS      7    7                     0.71     0.60  0.89  0.86  0.92  0.67  0.48  0.73
                      ISM        7    (7,7)                 0.71     0.57  0.87  0.84  0.90  0.76  0.88  0.79
                      ILSM       7    (7,7)                 0.86     0.72  0.88  0.85  0.91  0.75  0.67  0.80
                      GFA        7    15                    0.71     0.61  0.91  0.89  0.93  0.45  0.25  0.68
                      MOWGLI     7    7                     0.43     0.23  0.52  0.60  0.64  0.39  0.62  0.49
                      NMF        7    7                     0.71     0.61  0.88  0.86  0.91  0.70  0.90  0.80
            Abbreviations: ARI: Adjusted rand index; GFA: Group factor analysis; FMS: Fowlkes-Mallows score; ILSM: Integrated latent sources model;
            ISM: Integrated sources model; MOWGLI: Multi-Omics Wasserstein inteGrative anaLysIs; MVMDS: Multi-view multidimensional scaling;
            NMF: Non-negative matrix factorization; NMI: Normalized mutual information index.

            well as ILSM in the TEA-seq multi-omic single-cell data   a superior representation in terms of biology. In addition,
            in terms of average performance (0.80). However, we will   NMF retrieves only one class in the prokaryotic data due to
            show in the detailed analysis of this dataset that ISM finds   the extreme imbalance in the number of features per view


            Volume 1 Issue 3 (2024)                         98                               doi: 10.36922/aih.3427
   99   100   101   102   103   104   105   106   107   108   109