Page 84 - AIH-1-3
P. 84

Artificial Intelligence in Health                           Rotational thermography for breast cancer screening



            10.  EtehadTavakol M, Chandran V, Ng EYK, Kafieh R. Breast   20.  Chen  GL,  Lee  CY.  Iterative  Morphology-based
               cancer detection from thermal images using bispectral   Segmentation of Breast Tumors in Ultrasound Images. In:
               invariant features. Int J Therm Sci. 2013;69:21-36.  2014 International Symposium on Computer, Consumer and
                                                                  Control, IEEE; 2014. p. 1107-1110.
               doi: 10.1016/j.ijthermalsci.2013.03.001
                                                                  doi: 10.1109/IS3C.2014.288
            11.  Garduño-Ramón MA, Vega-Mancilla SG, Morales-
               Henández LA, Osornio-Rios RA. Supportive noninvasive   21.  Li C, Xu C, Gui C, Fox MD. Distance regularized level set
               tool for the diagnosis of breast cancer using a thermographic   evolution and its application to image segmentation. IEEE
               camera as sensor. Sensors (Basel). 2017;17(3):497.  Trans Image Process. 2010;19(12):3243-3254.
               doi: 10.3390/s17030497                             doi: 10.1109/TIP.2010.2069690
            12.  Prakash RM, Bhuvaneshwari K, Divya M, Sri KJ, Begum AS.   22.  Caselles V, Catté F, Coll T, Dibos F. A geometric model for
               Segmentation of Thermal Infrared Breast Images Using   active contours in image processing. Numer Math. 1993;66:1-3.
               K-means, FCM  and EM  Algorithms for Breast Cancer      doi: 10.1007/BF01385685
               Detection. In: 2017 International Conference on Innovations
               in Information, Embedded and Communication Systems   23.  Mambou SJ, Maresova P, Krejcar O, Selamat A, Kuca K.
               (ICIIECS), IEEE; 2017. p. 1-4.                     Breast cancer detection using infrared thermal imaging and
                                                                  a deep learning model. Sensors (Basel). 2018;18(9):2799.
               doi: 10.1109/ICIIECS.2017.8276142
                                                                  doi: 10.3390/s18092799
            13.  Venkataramani K, Mestha LK, Ramachandra L, Prasad SS,
               Kumar V, Raja PJ. Semi-automated breast cancer tumor   24.  Tsietso D, Yahya A, Samikannu R. A  review on thermal
               detection with thermographic video imaging. Annu Int Conf   imaging-based breast cancer detection using deep learning.
               IEEE Eng Med Biol Soc. 2015;2015:2022-2025.        Mob Inf Syst. 2022;2022:1-19.
                                                                  doi: 10.1155/2022/8952849
               doi: 10.1109/EMBC.2015.7318783
                                                               25.  Wu MN, Lin CC, Chang CC. Brain Tumor Detection Using
            14.  Kandlikar SG, Perez-Raya I, Raghupathi PA, et al. Infrared   Color-Based  K-Means  Clustering  Segmentation.  In:  Third
               imaging technology for breast cancer detection  -  Current   International Conference on Intelligent Information Hiding
               status, protocols and new directions. Int J Heat Mass Transf.
               2017;108:2303-2320.                                and Multimedia Signal Processing  (IIH-MSP), IEEE; 2007.
                                                                  p. 245-250.
               doi: 10.1016/j.ijheatmasstransfer.2017.01.086
                                                                  doi: 10.1109/IIHMSP.2007.4457697
            15.  Bandyopadhyay A, Chaudhuri A, Mondal HS. IR based   26.  Zhang Y, Wu X, He L, et al. Applications of hyperspectral
               Intelligent Image Processing Techniques for Medical   imaging in the detection and diagnosis of solid tumours.
               Applications. In:  2016 SAI Computing Conference  (SAI),   Transl Cancer Res. 2020;9(2):1265-1277.
               IEEE; 2016. p. 113-117.
                                                                  doi: 10.21037/tcr.2019.12.53
               doi: 10.1109/SAI.2016.7555970
                                                               27.  Lugano R, Ramachandran M, Dimberg A. Tumor
            16.  Bandyopadhyay A, Mondal HS, Dam B, Patranabis DC.   angiogenesis: Causes, consequences, challenges and
               Efficient infrared image processing and machine learning   opportunities. Cell Mol Life Sci. 2020;77(9):1745-1770.
               algorithm for breast cancer screening.  Comput Methods
               Biomech Biomed Eng Imaging Vis. 2023;11:2226-2238.     doi: 10.1007/s00018-019-03351-7
               doi: 10.1080/21681163.2023.2225639              28.  Houssein EH, Emam MM, Ali AA. An efficient multilevel
                                                                  thresholding segmentation method for thermography breast
            17.  Bandyopadhyay A, Mondal HS, Pal B, Dam B, Patranabis DC.   cancer imaging based on improved chimp optimization
               Exploring the Potential Use of Infrared Imaging in Medical   algorithm. Expert Syst Appl. 2021;185:115651.
               Diagnosis: A Comprehensive Framework for Diabetes and
               Breast Cancer Screening. In: Proceedings of 4  International      doi: 10.1016/j.eswa.2021.115651
                                                th
               Conference  on  Image  Processing  and  Capsule  Networks   29.  Houssein EH, Abdelkareem DA, Emam MM, Hameed MA,
               (ICIPCN), Springer; 2023.                          Younan M. An efficient image segmentation method for skin
            18.  Kapoor P, Prasad SVA. Image Processing for Early Diagnosis   cancer imaging using improved golden jackal optimization
               of Breast Cancer Using Infrared Images. In:  2010  the   algorithm. Comput Biol Med. 2022;149:106075.
               2  International Conference on Computer and Automation      doi: 10.1016/j.compbiomed.2022.106075
                nd
               Engineering (ICCAE), IEEE; 2010. p. 564-566.
                                                               30.  De Santana MA, Pereira JMS, da Silva FL, et al. Breast cancer
               doi: 10.1109/ICCAE.2010.5451827                    diagnosis based on mammary thermography and extreme
                                                                  learning machines. Res Biomed Eng. 2018;34(1):45-53.
            19.  Gonzalez RC, Woods RE. Digital Image Processing. 4  ed.
                                                       th
               London: Pearson Education, Inc.; 2007.             doi: 10.1590/2446-4740.05217

            Volume 1 Issue 3 (2024)                         78                               doi: 10.36922/aih.3312
   79   80   81   82   83   84   85   86   87   88   89