Page 90 - AIH-1-4
P. 90
Artificial Intelligence in Health Robotics and Vivaldi AI for ALS assessment
Needs. Vol. 1. Cham: Springer; 2016. Five trait taxonomy: History, measurement, and conceptual
issues. In: Handbook of Personality: Theory and Research.
doi: 10.1007/978-3-319-41264-1_44
New York: The Guilford Press; 2008.
27. Neerincx MA, van Vught W, Blanson Henkemans O, et al. 31. Bland JM, Altman DG. Statistical methods for assessing
Socio-cognitive engineering of a robotic partner for child’s agreement between two methods of clinical measurement.
diabetes self-management. Front Robot AI. 2019;6:118. Lancet. 1986;1(8476):307-310.
doi: 10.3389/frobt.2019.00118 32. Bland JM, Altman DG. Measuring agreement in
28. Brooks BR, Miller RG, Swash M, Munsat TL, World method comparison studies. Stat Methods Med Res.
Federation of Neurology Research Group on Motor 1999;8(2):135-160.
Neuron Diseases. El Escorial revisited: Revised criteria for doi: 10.1177/096228029900800204
the diagnosis of amyotrophic lateral sclerosis. Amyotroph
Lateral Scler Other Motor Neuron Disord. 2000;1(5):293-299. 33. Ranganathan P, Pramesh CS, Aggarwal R. Common pitfalls
in statistical analysis: Measures of agreement. Perspect Clin
doi: 10.1080/146608200300079536 Res. 2017;8(4):187-191.
29. Shahid A, Wilkinson K, Marcu S, Shapiro CM. State-Trait doi: 10.4103/picr.PICR_123_17
Anxiety Inventory (STAI). United Kingdom: Psychology
Press; 2011. 34. Koo TK, Li MY. A Guideline of selecting and reporting
intraclass correlation coefficients for reliability research.
doi: 10.1007/978-1-4419-9893-4_90 J Chiropr Med. 2016;15(2):155-163.
30. John OP, Naumann LP. Paradigm shift to the integrative Big doi: 10.1016/j.jcm.2016.02.012
Volume 1 Issue 4 (2024) 84 doi: 10.36922/aih.3732

