Page 58 - AIH-2-1
P. 58
Artificial Intelligence in Health Asymmetric U-Net for enhanced spinal MRI segmentation
24. Ronneberger O, Fischer P, Brox T. U-net: Convolutional p. 1055-1059.
Networks for Biomedical Image Segmentation. Berlin: doi: 10.1109/ICASSP40776.2020.9053405
Springer; 2015. p. 234-241.
28. Pang S, Pang C, Zhao L, et al. SpineParseNet: spine parsing
doi: 10.1007/978-3-319-24574-4_28 for volumetric MR image by a two-stage segmentation
25. Hempe H, Yilmaz EB, Meyer C, Heinrich MP. Opportunistic framework with semantic image representation. IEEE Trans
CT screening for degenerative deformities and osteoporotic Med Imaging. 2020;40(1):262-273.
fractures with 3D DeepLab. In: Medical Imaging 2022: Image doi: 10.1109/TMI.2020.3025087
Processing. Bellingham, DC: SPIE; p. 127-134.
29. Pang S, Pang C, Su Z, et al. “DGMSNet: Spine segmentation
doi: 10.1117/12.2612848 for MR image by a detection-guided mixed-supervised
26. Miao S, Piat S, Fischer P, et al. Dilated FCN for Multi-agent segmentation network. Med Image Anal. 2022;75:102261.
2D/3D Medical Image Registration. In: Proceedings of the doi: 10.1016/j.media.2021.102261
AAAI Conference on Artificial Intelligence.
30. He K, Zhang X, Ren S, Sun J. Deep residual learning for
doi: 10.1609/aaai.v32i1.11576 image recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition; 2016. p. 770-778.
27. Huang H, Lin L, Tong R, et al. Unet 3+: A full-Scale Connected
UNet for Medical Image Segmentation. United States: IEEE; doi: 10.1109/CVPR.2016.90
Volume 2 Issue 1 (2025) 52 doi: 10.36922/aih.3889

