Page 58 - AIH-2-1
P. 58

Artificial Intelligence in Health                       Asymmetric U-Net for enhanced spinal MRI segmentation



            24.  Ronneberger O, Fischer P, Brox T.  U-net: Convolutional   p. 1055-1059.
               Networks for Biomedical Image Segmentation. Berlin:      doi: 10.1109/ICASSP40776.2020.9053405
               Springer; 2015. p. 234-241.
                                                               28.  Pang S, Pang C, Zhao L, et al. SpineParseNet: spine parsing
               doi: 10.1007/978-3-319-24574-4_28                  for volumetric MR image by a two-stage segmentation
            25.  Hempe H, Yilmaz EB, Meyer C, Heinrich MP. Opportunistic   framework with semantic image representation. IEEE Trans
               CT screening for degenerative deformities and osteoporotic   Med Imaging. 2020;40(1):262-273.
               fractures with 3D DeepLab. In: Medical Imaging 2022: Image      doi: 10.1109/TMI.2020.3025087
               Processing. Bellingham, DC: SPIE; p. 127-134.
                                                               29.  Pang S, Pang C, Su Z, et al. “DGMSNet: Spine segmentation
               doi: 10.1117/12.2612848                            for MR  image  by a detection-guided mixed-supervised
            26.  Miao S, Piat S, Fischer P, et al. Dilated FCN for Multi-agent   segmentation network. Med Image Anal. 2022;75:102261.
               2D/3D Medical Image Registration. In:  Proceedings of the      doi: 10.1016/j.media.2021.102261
               AAAI Conference on Artificial Intelligence.
                                                               30.  He K,  Zhang X,  Ren S,  Sun  J. Deep residual learning for
               doi: 10.1609/aaai.v32i1.11576                      image recognition. In: Proceedings of the IEEE Conference on
                                                                  Computer Vision and Pattern Recognition; 2016. p. 770-778.
            27.  Huang H, Lin L, Tong R, et al. Unet 3+: A full-Scale Connected
               UNet for Medical Image Segmentation. United States: IEEE;       doi: 10.1109/CVPR.2016.90
























































            Volume 2 Issue 1 (2025)                         52                               doi: 10.36922/aih.3889
   53   54   55   56   57   58   59   60   61   62   63