Page 57 - AIH-2-1
P. 57

Artificial Intelligence in Health                       Asymmetric U-Net for enhanced spinal MRI segmentation



            Availability of data                                  Spine Surgery Current Aspects. Turkey: Ali Arslantaş. 2016.

            Data are available from the corresponding author upon   12.  Haldeman S, Kopansky-Giles D, Hurwitz EL,  et al.
            reasonable request.                                   Advancements in the management of spine disorders. Best
                                                                  Pract Res Clin Rheumatol. 2012;26(2):263-280.
            References                                            doi: 10.1016/j.berh.2012.03.006
            1.   Kubaszewski Ł, Wojdasiewicz P, Rożek M, et al. Syndromes   13.  Azimi P, Yazdanian T, Benzel EC, et al. A review on the use
               with chronic non-bacterial osteomyelitis in the spine.   of artificial  intelligence in  spinal diseases.  Asian  Spine  J.
               Reumatologia. 2015;53(6):328-336.                  2020;14(4):543.
               doi: 10.5114/reum.2015.57639                       doi: 10.31616/asj.2020.0147
            2.   Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP.   14.  Da Costa RV, Moore SA. Differential diagnosis of
               ISSLS prize winner: The anatomy of failure in lumbar disc   spinal  diseases.  Vet  Clin North  Am  Small  Anim  Pract.
               herniation: An in vivo, multimodal, prospective study of 181   2010;40(5):755-763.
               subjects. Spine (Phila Pa 1976). 2013;38(17):1491-1500.
                                                                  doi: 10.1007/978-981-16-9759-3_11
               doi: 10.1055/s-0034-1376749
                                                               15.  Cohen-Adad J, Alonso-Ortiz E, Abramovic M, et al. Generic
            3.   Adams MA, Roughley PJ. What is intervertebral disc   acquisition protocol for quantitative MRI of the spinal cord.
               degeneration, and what causes it?  Spine (Phila Pa 1976).   Nat Protocols. 2021;16(10):4611-4632.
               2006;31(18):2151-2161.
                                                               16.  Sollmann N, Löffler MT, Kronthaler S,  et al. MRI‐based
               doi: 10.1097/01.brs.0000231761.73859.2c            quantitative osteoporosis imaging at the spine and femur.
                                                                  J Magn Reson Imaging. 2021;54(1):12-35.
            4.   Pedersen SJ, Maksymowych WP. The pathogenesis of
               ankylosing spondylitis: An update.  Curr Rheumatol      doi: 10.1002/jmri.27260
               Rep. 2019;21(10):58.
                                                               17.  Willemink  MJ,  Koszek  WA,  Hardell  C,  et al.  Preparing
               doi: 10.1007/s11926-019-0856-3                     medical imaging data for machine learning.  Radiology.
                                                                  2020;295(1):4-15.
            5.   Aouad K, Maksymowych WP, Baraliakos X, Ziade N.
               Update of imaging in the diagnosis and management of      doi: 10.1148/radiol.2020192224
               axial spondyloarthritis.  Best  Pract  Res  Clin  Rheumatol.   18.  Patel V. A framework for secure and decentralized sharing
               2020;34(6):101628.                                 of medical imaging data via blockchain consensus. Health
               doi: 10.1016/j.berh.2020.101628                    Informatics J. 2019;25(4):1398-1411.
            6.   Hassan I, Wietfeldt ED. Presacral tumors: Diagnosis and      doi: 10.1177/1460458218769699
               management. Clin Colon Rectal Surg. 2009;22(2):84-93.
                                                               19.  Senthilkumaran N, Vaithegi S. Image segmentation by using
               doi: 10.1055/s-0029-1223839                        thresholding techniques for medical images. Comput Sci Eng
                                                                  Int J. 2016;6(1):1-13.
            7.   Hashimoto K, Nishimura S, Miyamoto H, Toriumi K,
               Ikeda T, Akagi M. Comprehensive treatment outcomes of   20.  Song Y, Ma B, Gao W, Fan S. Medical image edge detection
               giant cell tumor of the spine: A retrospective study. Medicine   based on improved differential  evolution  algorithm  and
               (Baltimore). 2022;101(32):e29963.                  prewitt operator. Acta Microscopica. 2019;28(1).
               doi: 10.1097/MD.0000000000029963                21.  Zhao F, Zhang J,  Ma Y. Medical image  processing  based
                                                                  on mathematical  morphology. In:  Proceedings of the 2012
            8.   Kalra  MK,  Maher  MM,  Toth  TL,  et al.  Strategies  for  CT
               radiation dose optimization. Radiology. 2004;230(3):619-628.  International Conference on Computer Application and
                                                                  System Modeling (ICCASM 2012); 2012. p. 948-950.
               doi: 10.1148/radiol.2303021726
                                                                  doi: 10.2991/iccasm.2012.241
            9.   Winn A, Martin A, Castellon I, et al. Spine MRI: A review
               of commonly encountered emergent conditions. Top Magn   22.  Yamanakkanavar  N,  Choi  JY,  Lee  B.  MRI  segmentation
                                                                  and classification of human brain using deep learning for
               Reson Imaging. 2020;29(6):291-320.
                                                                  diagnosis of Alzheimer’s disease: A survey. Sensors (Basel).
               doi: 10.1097/RMR.0000000000000261                  2020;20(11):3243.
            10.  Castaldo G, Lembo F, Tomaiuolo R. Molecular diagnostics:      doi: 10.3390/s20113243
               Between chips and customized medicine. Clin Chem Labo   23.  Li H, Luo H, Huan W, et al. Automatic lumbar spinal MRI
               Med. 2010;48(7):973-982.
                                                                  image segmentation with a multi-scale attention network.
               doi: 10.1515/CCLM.2010.182                         Neural Comput Appl. 2021;33:11589-11602.
            11.  Arslantaş A, Dalbayrak S, Şimşek S, et al. Minimally Invasive      doi: 10.1007/s00521-021-05856-4


            Volume 2 Issue 1 (2025)                         51                               doi: 10.36922/aih.3889
   52   53   54   55   56   57   58   59   60   61   62