Page 57 - AIH-2-1
P. 57
Artificial Intelligence in Health Asymmetric U-Net for enhanced spinal MRI segmentation
Availability of data Spine Surgery Current Aspects. Turkey: Ali Arslantaş. 2016.
Data are available from the corresponding author upon 12. Haldeman S, Kopansky-Giles D, Hurwitz EL, et al.
reasonable request. Advancements in the management of spine disorders. Best
Pract Res Clin Rheumatol. 2012;26(2):263-280.
References doi: 10.1016/j.berh.2012.03.006
1. Kubaszewski Ł, Wojdasiewicz P, Rożek M, et al. Syndromes 13. Azimi P, Yazdanian T, Benzel EC, et al. A review on the use
with chronic non-bacterial osteomyelitis in the spine. of artificial intelligence in spinal diseases. Asian Spine J.
Reumatologia. 2015;53(6):328-336. 2020;14(4):543.
doi: 10.5114/reum.2015.57639 doi: 10.31616/asj.2020.0147
2. Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP. 14. Da Costa RV, Moore SA. Differential diagnosis of
ISSLS prize winner: The anatomy of failure in lumbar disc spinal diseases. Vet Clin North Am Small Anim Pract.
herniation: An in vivo, multimodal, prospective study of 181 2010;40(5):755-763.
subjects. Spine (Phila Pa 1976). 2013;38(17):1491-1500.
doi: 10.1007/978-981-16-9759-3_11
doi: 10.1055/s-0034-1376749
15. Cohen-Adad J, Alonso-Ortiz E, Abramovic M, et al. Generic
3. Adams MA, Roughley PJ. What is intervertebral disc acquisition protocol for quantitative MRI of the spinal cord.
degeneration, and what causes it? Spine (Phila Pa 1976). Nat Protocols. 2021;16(10):4611-4632.
2006;31(18):2151-2161.
16. Sollmann N, Löffler MT, Kronthaler S, et al. MRI‐based
doi: 10.1097/01.brs.0000231761.73859.2c quantitative osteoporosis imaging at the spine and femur.
J Magn Reson Imaging. 2021;54(1):12-35.
4. Pedersen SJ, Maksymowych WP. The pathogenesis of
ankylosing spondylitis: An update. Curr Rheumatol doi: 10.1002/jmri.27260
Rep. 2019;21(10):58.
17. Willemink MJ, Koszek WA, Hardell C, et al. Preparing
doi: 10.1007/s11926-019-0856-3 medical imaging data for machine learning. Radiology.
2020;295(1):4-15.
5. Aouad K, Maksymowych WP, Baraliakos X, Ziade N.
Update of imaging in the diagnosis and management of doi: 10.1148/radiol.2020192224
axial spondyloarthritis. Best Pract Res Clin Rheumatol. 18. Patel V. A framework for secure and decentralized sharing
2020;34(6):101628. of medical imaging data via blockchain consensus. Health
doi: 10.1016/j.berh.2020.101628 Informatics J. 2019;25(4):1398-1411.
6. Hassan I, Wietfeldt ED. Presacral tumors: Diagnosis and doi: 10.1177/1460458218769699
management. Clin Colon Rectal Surg. 2009;22(2):84-93.
19. Senthilkumaran N, Vaithegi S. Image segmentation by using
doi: 10.1055/s-0029-1223839 thresholding techniques for medical images. Comput Sci Eng
Int J. 2016;6(1):1-13.
7. Hashimoto K, Nishimura S, Miyamoto H, Toriumi K,
Ikeda T, Akagi M. Comprehensive treatment outcomes of 20. Song Y, Ma B, Gao W, Fan S. Medical image edge detection
giant cell tumor of the spine: A retrospective study. Medicine based on improved differential evolution algorithm and
(Baltimore). 2022;101(32):e29963. prewitt operator. Acta Microscopica. 2019;28(1).
doi: 10.1097/MD.0000000000029963 21. Zhao F, Zhang J, Ma Y. Medical image processing based
on mathematical morphology. In: Proceedings of the 2012
8. Kalra MK, Maher MM, Toth TL, et al. Strategies for CT
radiation dose optimization. Radiology. 2004;230(3):619-628. International Conference on Computer Application and
System Modeling (ICCASM 2012); 2012. p. 948-950.
doi: 10.1148/radiol.2303021726
doi: 10.2991/iccasm.2012.241
9. Winn A, Martin A, Castellon I, et al. Spine MRI: A review
of commonly encountered emergent conditions. Top Magn 22. Yamanakkanavar N, Choi JY, Lee B. MRI segmentation
and classification of human brain using deep learning for
Reson Imaging. 2020;29(6):291-320.
diagnosis of Alzheimer’s disease: A survey. Sensors (Basel).
doi: 10.1097/RMR.0000000000000261 2020;20(11):3243.
10. Castaldo G, Lembo F, Tomaiuolo R. Molecular diagnostics: doi: 10.3390/s20113243
Between chips and customized medicine. Clin Chem Labo 23. Li H, Luo H, Huan W, et al. Automatic lumbar spinal MRI
Med. 2010;48(7):973-982.
image segmentation with a multi-scale attention network.
doi: 10.1515/CCLM.2010.182 Neural Comput Appl. 2021;33:11589-11602.
11. Arslantaş A, Dalbayrak S, Şimşek S, et al. Minimally Invasive doi: 10.1007/s00521-021-05856-4
Volume 2 Issue 1 (2025) 51 doi: 10.36922/aih.3889

