Page 85 - AIH-2-1
P. 85
Artificial Intelligence in Health ViT for Glioma Classification in MRI
12. Parmar N, Vaswani A, Uszkoreit J, et al. Image Transformer. 23. Wang P, Yang Q, He Z, Yuan Y. Vision transformers in multi-
In: JMLR Workshop and Conference Proceedings; 2018. modal brain tumor MRI segmentation: A review. Meta
p. 4055-4064. Radiol. 2023;1:100004.
doi: 10.48550/arXiv.1802.05751 doi: 10.1016/j.metrad.2023.100004
13. Zheng S, Lu J, Zhao H, et al. Rethinking semantic 24. Marathe A, Kadam V, Chaumal A, Kodilkar S, Joshi A,
segmentation from a sequence-to-sequence perspective Sawant S. Performance analysis of memory-efficient vision
with transformers; 2020. transformers in brain tumor segmentation. In: Artificial
Intelligence-Based Healthcare Systems. Cham: Springer
doi: 10.48550/arXiv.2012.15840
Nature Switzerland; 2023. p. 125-133.
14. Child R, Gray S, Radford A, Sutskever I. Generating long doi: 10.1007/978-3-031-41925-6_9
sequences with sparse transformers; 2019.
25. Asiri AA, Shaf A, Ali T, et al. Exploring the power of deep
doi: 10.48550/arXiv.1904.10509 learning: Fine-tuned vision transformer for accurate and
15. Wu H, Xiao B, Codella N, et al. Introducing Convolutions efficient brain tumor detection in MRI Scans. Diagnostics.
to Vision Transformers. CVF 2021. United States: IEEE. 2023;13(12):2094.
p. 22-31. doi: 10.3390/diagnostics13122094
doi: 10.1109/ICCV48922.2021.00009 26. Salama K. Image Classification with Vision Transformer;
16. Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, 2022. Available: https://keras.io/examples/vision/image_
Zagoruyko S. End-to-end object detection with transformers. classification_with_vision_transformer [Last accessed on
In: European Conference on Computer Vision 2020 Aug 23. 2022 Oct 10].
Cham: Springer International Publishing; 2020. p. 213-229. 27. Mabu S, Atsumo A, Kido S, Kuremoto T, Hirano Y.
doi: 10.1007/978-3-030-58452-8_13 Investigating the effects of transfer learning on ROI-based
classification of chest CT images: A case study on diffuse
17. Aloraini M, Khan A, Aladhadh S, Habib S, Alsharekh MF, lung diseases. J Signal Process Syst. 2020;92:307-313.
Islam M. Ombining the transformer and convolution for
effective brain tumor classification using MRI Images. Appl doi: 10.1007/s11265-019-01499-w
Sci. 2023;13:3680. 28. Kanesamoorthy K, Dissanayake MB. Prediction of treatment
doi: 10.3390/app13063680 failure of tuberculosis using support vector machine with
genetic algorithm. Int J Mycobacteriol. 2021;10(3):279-284.
18. Mehta S, Lu X, Weaver D, Elmore JG, Hajishirzi H,
Shapiro L. HATNet: An end-to-end holistic attention doi: 10.4103/ijmy.ijmy_130_21
network for diagnosis of breast biopsy images; 2007. 29. Sun L, Zhang S, Chen H, Luo L. Brain tumor segmentation
doi: 10.48550/arXiv.2007.13007 and survival prediction using multimodal MRI scans with
deep learning. Front Neurosci. 2019;13:810.
19. Lan YL, Zou S, Qin B, Zhu X. Potential roles of transformers
in brain tumor diagnosis and treatment. Brain X. 2023;1:e23. doi: 10.3389/fnins.2019.00810
doi: 10.1002/brx2.23 30. Latif G. DeepTumor: Framework for brain MR image
classification, segmentation and tumor detection.
20. Courant R, Edberg M, Dufour N, Kalogeiton V. Transformers Diagnostics (Basel). 2022;12(11):2888.
and visual transformers. In: Colliot O, editors. Machine
Learning for Brain Disorders. Neuromethods. vol. 197. United doi: 10.3390/diagnostics12112888
States: Humana; 2023. 31. El-Melegy MT, El-Magd KMA. A Multiple Classifiers
doi: 10.1007/978-1-0716-3195-9_6 System for Automatic Multimodal Brain Tumor
Segmentation. In: Proceedings of the 2019 15 International
th
21. Zunair H, Ben Hamza A. Sharp U-Net: Depthwise Computer Engineering Conference (ICENCO), Giza, Egypt.
convolutional network for biomedical image segmentation. 29-30 December 2019. New York, NY, USA: IEEE; 2019.
Comput Biol Med. 2021;136:104699.
doi: 10.1109/ICENCO48310.2019.9027389
doi: 10.1016/j.compbiomed.2021.104699
32. Xue Y, Yang Y, Farhat FG, et al. Brain tumor classification
22. Dasanayaka C, Dharmasena B, Bandara WR, with tumor segmentations and a dual path residual
Dissanayake MB, Jayasinghe R. Segmentation of Mental convolutional neural network from MRI and pathology
Foramen in Dental Panoramic Tomography Using Deep images. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke
Learning. In: 2019 IEEE 14 Conference on Industrial and and Traumatic Brain Injuries. Germany: Springer; 2020.
th
Information Systems (ICIIS). IEEE; 2019. p. 81-84. p. 360-367.
doi: 10.1109/ICIIS47346.2019.9063312 doi: 10.1007/978-3-030-46643-5_36
Volume 2 Issue 1 (2025) 79 doi: 10.36922/aih.4155

