Page 85 - AIH-2-1
P. 85

Artificial Intelligence in Health                                       ViT for Glioma Classification in MRI



            12.  Parmar N, Vaswani A, Uszkoreit J, et al. Image Transformer.   23.  Wang P, Yang Q, He Z, Yuan Y. Vision transformers in multi-
               In:  JMLR Workshop and Conference Proceedings; 2018.   modal brain tumor MRI segmentation: A  review.  Meta
               p. 4055-4064.                                      Radiol. 2023;1:100004.
               doi: 10.48550/arXiv.1802.05751                     doi: 10.1016/j.metrad.2023.100004
            13.  Zheng S, Lu J, Zhao H,  et al. Rethinking semantic   24.  Marathe A, Kadam V, Chaumal A, Kodilkar S, Joshi A,
               segmentation from a sequence-to-sequence perspective   Sawant S. Performance analysis of memory-efficient vision
               with transformers; 2020.                           transformers in brain tumor segmentation. In:  Artificial
                                                                  Intelligence-Based Healthcare  Systems.  Cham:  Springer
               doi: 10.48550/arXiv.2012.15840
                                                                  Nature Switzerland; 2023. p. 125-133.
            14.  Child R, Gray S, Radford A, Sutskever I. Generating long      doi: 10.1007/978-3-031-41925-6_9
               sequences with sparse transformers; 2019.
                                                               25.  Asiri AA, Shaf A, Ali T, et al. Exploring the power of deep
               doi: 10.48550/arXiv.1904.10509                     learning: Fine-tuned vision transformer for accurate and
            15.  Wu H, Xiao B, Codella N, et al. Introducing Convolutions   efficient brain tumor detection in MRI Scans. Diagnostics.
               to Vision Transformers. CVF 2021. United States: IEEE.   2023;13(12):2094.
               p. 22-31.                                          doi: 10.3390/diagnostics13122094

               doi: 10.1109/ICCV48922.2021.00009               26.  Salama  K.  Image Classification with Vision Transformer;
            16.  Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A,   2022. Available: https://keras.io/examples/vision/image_
               Zagoruyko S. End-to-end object detection with transformers.   classification_with_vision_transformer [Last accessed on
               In: European Conference on Computer Vision 2020 Aug 23.   2022 Oct 10].
               Cham: Springer International Publishing; 2020. p. 213-229.  27.  Mabu S, Atsumo A, Kido S, Kuremoto T, Hirano Y.
               doi: 10.1007/978-3-030-58452-8_13                  Investigating the effects of transfer learning on ROI-based
                                                                  classification of chest CT images: A case study on diffuse
            17.  Aloraini M, Khan A, Aladhadh S, Habib S, Alsharekh MF,   lung diseases. J Signal Process Syst. 2020;92:307-313.
               Islam M. Ombining the transformer  and convolution for
               effective brain tumor classification using MRI Images. Appl      doi: 10.1007/s11265-019-01499-w
               Sci. 2023;13:3680.                              28.  Kanesamoorthy K, Dissanayake MB. Prediction of treatment
               doi: 10.3390/app13063680                           failure of tuberculosis using support vector machine with
                                                                  genetic algorithm. Int J Mycobacteriol. 2021;10(3):279-284.
            18.  Mehta S, Lu X, Weaver D, Elmore JG, Hajishirzi H,
               Shapiro   L. HATNet: An end-to-end holistic attention      doi: 10.4103/ijmy.ijmy_130_21
               network for diagnosis of breast biopsy images; 2007.  29.  Sun L, Zhang S, Chen H, Luo L. Brain tumor segmentation
               doi: 10.48550/arXiv.2007.13007                     and survival prediction using multimodal MRI scans with
                                                                  deep learning. Front Neurosci. 2019;13:810.
            19.  Lan YL, Zou S, Qin B, Zhu X. Potential roles of transformers
               in brain tumor diagnosis and treatment. Brain X. 2023;1:e23.     doi: 10.3389/fnins.2019.00810
               doi: 10.1002/brx2.23                            30.  Latif G. DeepTumor: Framework for brain MR image
                                                                  classification,  segmentation  and  tumor  detection.
            20.  Courant R, Edberg M, Dufour N, Kalogeiton V. Transformers   Diagnostics (Basel). 2022;12(11):2888.
               and visual transformers. In: Colliot O, editors.  Machine
               Learning for Brain Disorders. Neuromethods. vol. 197. United      doi: 10.3390/diagnostics12112888
               States: Humana; 2023.                           31.  El-Melegy MT, El-Magd KMA. A  Multiple Classifiers
               doi: 10.1007/978-1-0716-3195-9_6                   System for Automatic Multimodal Brain Tumor
                                                                  Segmentation. In: Proceedings of the 2019 15  International
                                                                                                   th
            21.  Zunair H, Ben Hamza A. Sharp U-Net: Depthwise    Computer Engineering Conference (ICENCO), Giza, Egypt.
               convolutional network for biomedical image segmentation.   29-30 December 2019. New York, NY, USA: IEEE; 2019.
               Comput Biol Med. 2021;136:104699.
                                                                  doi: 10.1109/ICENCO48310.2019.9027389
               doi: 10.1016/j.compbiomed.2021.104699
                                                               32.  Xue Y, Yang Y, Farhat FG, et al. Brain tumor classification
            22.  Dasanayaka  C,  Dharmasena  B,  Bandara  WR,     with tumor segmentations and a dual path residual
               Dissanayake   MB, Jayasinghe R. Segmentation of Mental   convolutional neural network from MRI and pathology
               Foramen in Dental Panoramic Tomography Using Deep   images. In:  Brainlesion: Glioma, Multiple Sclerosis, Stroke
               Learning. In: 2019 IEEE 14  Conference on Industrial and   and Traumatic Brain Injuries. Germany: Springer; 2020.
                                    th
               Information Systems (ICIIS). IEEE; 2019. p. 81-84.  p. 360-367.
               doi: 10.1109/ICIIS47346.2019.9063312               doi: 10.1007/978-3-030-46643-5_36


            Volume 2 Issue 1 (2025)                         79                               doi: 10.36922/aih.4155
   80   81   82   83   84   85   86   87   88   89   90