Page 158 - AIH-2-3
P. 158

Artificial Intelligence in Health                                     Explainable solutions from AI for HSSs



            Conflict of interest                                  doi: 10.1186/s12911-019-0804-1

            The authors declare they have no competing interests.  6.   Musen M. The protégé project: A  look back and a look
                                                                  forward. AI Matters. 2015;1(4):4-12.
            Author contributions                                  doi: 10.1145/2757001.2757003

            Conceptualization: Valeriya Gribova                7.   Mortensen J, Minty E, Januszyk M, et al. Using the wisdom
            Investigation: All authors                            of the crowds to find critical errors in biomedical ontologies:
            Methodology: All authors                              A study of SNOMED CT.  J  Am Med Inform Assoc.
            Software: Elena Shalfeeva                             2015;22(3):640-648.
            Writing – original draft: All authors                 doi: 10.1136/amiajnl-2014-002901
            Writing – review & editing: Elena Shalfeeva
                                                               8.   Loh HW, Ooi CP, Seoni S, Barua PD, Molinari F, Acharya UR.
            Ethics approval and consent to participate            Application  of  explainable  artificial  intelligence  for
                                                                  healthcare: A  systematic review of the last decade (2011-
            Not applicable.                                       2022). Comput Methods Programs Biomed. 2022;226:107161.
                                                                  doi: 10.1016/j.cmpb.2022.107161
            Consent for publication
                                                               9.   Yang G, Ye Q, Xia J. Unbox the black-box for the medical
            Not applicable.                                       explainable AI via multi-modal and multi-centre data
                                                                  fusion: A  mini-review, two showcases and beyond.  Inf
            Availability of data                                  Fusion. 2022;77:29-52.
            Some software and information components for the study      doi: 10.48550/arXiv.2102.01998
            can be obtained by contacting the authors at shalf@iacp.  10.  Gartner Identifies the Top Strategic Technology Trends for 2021.
            dvo.ru.
                                                                  STAMFORD, Conn; 2020. Available from: https://www.gartner.
            Further disclosure                                    com/en/newsroom/press-releases/2020-10-19-gartner-
                                                                  identifies-the-top-strategic-technology-trends-for-2021
            Some of the findings have been presented in the preprint   11.  Pressman RS.  Architectural Design, Software Engineering:
            (https://doi.org/10.21203/rs.3.rs-814383/v1) deposited in   Practitioner’s  Approach. 7   ed. New  York, NY, USA:
                                                                                      th
            the preprint server “Research Square.”                McGraw-Hill;  2010. p. 242-275.
            References                                         12.  Islam M, Katiyar V. Development of a software maintenance
                                                                  cost estimation model: 4  GL perspective. Int J Techn Res
                                                                                     th
            1.   Peleg M. Computer-interpretable clinical guidelines:   Appl. 2014;2(6):65-68.
               A methodological review. J Biomed Inform. 2013;46(4):744-763.
                                                               13.  Izurieta C, Bieman JM. A  multiple case study of design
               doi: 10.1016/j.jbi.2013.06.009                     pattern decay, grime, and rot in evolving software systems.
            2.   Young O, Shahar Y, Liel Y,  et al. Runtime application   Software Qual J. 2013;21(2):289-323.
               of Hybrid-Asbru clinical guidelines.  J  Biomed Inform.      doi: 10.1007/s11219-012-9175-x
               2007;40(5):507-526.
                                                               14.  Breivold HP, Crnkovic I,  Eriksson PJ.  Analyzing Software
               doi: 10.1016/j.jbi.2006.12.004                     Evolvability. COMPSAC 2008: 32  Annual IEEE International
                                                                                         nd
            3.   Novais P, Oliveira T, Satoh K, Neves J. The role of ontologies   Computer Software and Applications Conference.  Turku,
               and decision frameworks in computer-interpretable   Finland; 2008. p. 327-330.
               guideline execution. In: Nalepa G, Baumeister J, editors.   15.  Finn VK.  About Data Mining. Artificial Intelligence News.
               Synergies between Knowledge Engineering and Software   (In  Russ.);  2004.  p.  3-18.  Available  from:  https://masters.
               Engineering. Advances in Intelligent Systems and Computing.   donntu.ru/2006/kita/balabanov/library/articles/art010.pdf
               Vol. 626. Cham: Springer; 2018. p. 197-216.
                                                               16.  Weissler EH, Naumann T, Andersson T, et al. The role of
            4.   Deng C, Ji X, Rainey C, Zhang J, Lu W. Integrating   machine learning in clinical research: Transforming the
               machine learning with human knowledge.  iScience.   future of evidence generation. Trials. 2021;22:537.
               2020;23(11):101656.
                                                                  doi: 10.1186/s13063-021-05489-x
               doi: 10.1016/j.isci.2020.101656
                                                               17.  Lin Z, Cheng YT, Cheung BMY. Machine learning
            5.   Müller L, Gangadharaiah R, Klein SC, et al. An open access   algorithms identify hypokalaemia risk in people with
               medical knowledge base for community driven diagnostic   hypertension in the United States National Health and
               decision support system development.  BMC Med Inform   Nutrition Examination Survey 1999-2018.  Ann  Med.
               Decis Mak. 2019;19:93.                             2023;55(1):2209336.


            Volume 2 Issue 3 (2025)                        152                               doi: 10.36922/aih.5736
   153   154   155   156   157   158   159   160   161   162   163