Page 117 - AIH-2-4
P. 117

Artificial Intelligence in Health                                  Autonomic nervous system patterns in men



            Author contributions                                  parameters in elderly with type  2 diabetes mellitus using
                                                                  principal component analysis. Gazz Med Ital Arch Sci Med.
            This is a single-authored article.                    2022;181:879-884.
            Ethics approval and consent to participate            doi: 10.23736/S0393-3660.22.04782-9

            The study protocol was ethically approved by the Human   6.   Gillinov S, Etiwy M, Wang R,  et al. Variable accuracy of
                                                                  wearable heart rate monitors during aerobic exercise. Med
            Research Ethics Committee of the Federal University   Sci Sports Exerc. 2017;49(8):1697-1703.
            of Amapá (CAAE: 50150121.1.0000.0003; approval
            number: 5.121.013) and conducted in accordance with the      doi: 10.1249/MSS.0000000000001284
            Declaration of Helsinki. All participants provided verbal   7.   Materko W, Dos Reis Façanha CC, Guedes GC,  et al.
            informed consent before their inclusion in the study.  Temporal cross-correlation between Polar  heart rate
                                                                                                   ®
                                                                  monitor interface board and ECG to measure RR interval at
            Consent for publication                               rest. Isokinet Exerc Sci. 2024;32(1):59-64.
            Verbal informed consent was obtained from all participants      doi: 10.3233/IES-230061
            before their inclusion in the study. The consent form   8.   Latino F, Tafuri F. Wearable sensors and the evaluation of
            explicitly stated that anonymized data would be analyzed   physiological performance  in elite  field hockey players.
            and subsequently used for publication in scientific   Sports (Basel). 2024;12(5):124.
            journals. All data were fully anonymized before analysis,      doi: 10.3390/sports12050124
            and the results are presented in an aggregated format to   9.   Trevizani GA, Nasario-Junior O, Benchimol-Barbosa PR,
            ensure that no individual participant can be identified.
                                                                  Silva LP, Nadal J. Cardiac autonomic changes in middle-
            Availability of data                                  aged women: Identification based on principal component
                                                                  analysis. Clin Physiol Funct Imaging. 2016;36(4):269-273.
            The dataset generated and analyzed during the current      doi: 10.1111/cpf.12222
            study is not publicly available, since it contains sensitive
            clinical information that is subject to data protection   10.  Perrone MA, Volterrani M, Manzi V, Barchiesi F, Iellamo F.
            regulations.                                          Heart rate variability modifications in response to different
                                                                  types of exercise training in athletes.  J  Sports Med Phys
            References                                            Fitness. 2021;61(10):1411-1415.
                                                                  doi: 10.23736/S0022-4707.21.12480-6
            1.   Timmis A, Vardas P, Townsend N, et al. European society of
               cardiology: Cardiovascular disease statistics 2021. Eur Heart   11.  Rafieisangari R, Shiri N. A  multi-adaptive neuro-fuzzy
               J. 2022;43(8):716-799.                             inference system with variable thresholds for heartbeat
                                                                  classification. Artif Intell Health. 2024;1(4):43-60.
               doi: 10.1093/eurheartj/ehab892
                                                                  doi: 10.36922/aih.3367
            2.   Chorin E, Hochstadt A, Schwartz AL, Matz G, Viskin S,
               Rosso R. Continuous heart rate monitoring for automatic   12.  Nshimiyimana M, Niyogisubizo J, Ninteretse JD. Heartbeat
               detection of life-threatening arrhythmias with novel bio-  classification using various machine learning models:
               sensing technology. Front Cardiovasc Med. 2021;8:707621.  A comparative study. Artif Intell Health. 2024;1(4):61-72.
               doi: 10.3389/fcvm.2021.707621                      doi: 10.36922/aih.3543
            3.   Zeid S, Buch G, Velmeden D, et al. Heart rate variability:   13.  Materko W, Miranda SAM, Bezerra THL, De Oliveira
               Reference values and role for clinical profile and mortality   Figueira CAM. Heart rate variability in soccer players and
               in individuals with heart failure.  Clin Res Cardiol.   the application of unsupervised machine learning.  Explor
               2024;113(9):1317-1330.                             Cardiol. 2025;3:101241.
               doi: 10.1007/s00392-023-02248-7                    doi: 10.37349/ec.2025.101241
            4.   Materko W, Fernandes DF, Façanha CCR, et al. A machine   14.  Materko W. Stratification fitness aerobic based on heart rate
               learning approach to developing an accurate stratification   variability during rest by principal component analysis and
               of type  2 diabetes mellitus based on heart rate variability   K-means clustering. J Exerc Physiol. 2018;21(1):91-101.
               parameters using the K-means clustering technique in   15.  Kaya IE, Pehlivanlı AÇ, Sekizkardeş EG, Ibrikci T. PCA
               elderly women. Gazz Med Ital Arch Sci Med. 2024;183:44-50.  based clustering for brain tumor segmentation of T1w MRI
               doi: 10.23736/S0393-3660.23.05096-9                images. Comput Methods Programs Biomed. 2017;140:19-28.
                                                                  doi: 10.1016/j.cmpb.2016.11.011
            5.   Materko W, Fernandes DF, Sadala MN, Pureza D,
               Alberto AAD, Pena FPS. Evaluation on heart rate variability   16.  Jolliffe IT, Cadima J. Principal component analysis: A review


            Volume 2 Issue 4 (2025)                        111                          doi: 10.36922/AIH025050006
   112   113   114   115   116   117   118   119   120   121   122