Page 119 - AIH-2-4
P. 119
Artificial Intelligence in Health Autonomic nervous system patterns in men
males at rest. Open Access Biostat Bioinform. 2018;2(1):1-7. Declaration of Helsinki: Ethical principles for medical research
involving human subjects. JAMA. 2013;310(20):2191-2194.
doi: 10.31031/oabb.2018.02.000536
doi: 10.1001/jama.2013.281053
37. Nasario-Junior O, Benchimol-Barbosa PR, Pedrosa RC,
Nadal J. Assessment of autonomic function by phase 47. Rousseeuw PJ. Silhouettes: A graphical aid to the
rectification of RR-interval histogram analysis in Chagas interpretation and validation of cluster analysis. J Comput
disease. Arq Bras Cardiol. 2015;104(6):450-455. Appl Math. 1987;20:53-65.
doi: 10.5935/abc.20150032 doi: 10.1016/0167-8396(87)90125-7
38. Greenacre M, Groenen PJF, Hastie T, et al. Principal 48. Raju S, Woo H, Fawzy A, et al. Decreased cardiac autonomic
component analysis. Nat Rev Methods Primers. 2022;2(1):100. function is associated with higher exacerbation risk and
symptom burden in chronic obstructive pulmonary disease.
doi: 10.1038/s43586-022-00184-w
J COPD Found. 2023;10(3):328-334.
39. Peres-Neto PR, Jackson DA, Somers KM. How many
principal components? Stopping rules for determining the doi: 10.15326/jcopdf.2023.0410
number of non-trivial axes revisited. Comput Stat Data 49. Sundas A, Contreras I, Navarro-Otano J, Soler J, Beneyto
Anal. 2005;49(4):974-997. A, Vehi J. Heart rate variability over the decades: A scoping
review. PeerJ. 2025;13:e19347.
doi: 10.1016/j.csda.2004.11.005
doi: 10.7717/peerj.19347
40. Cadima J, Jolliffe IT. Loadings and correlations in the
interpretation of principal components. J Appl Stat. 50. Osborne MT, Shin LM, Mehta NN, Pitman RK, Fayad ZA,
1995;22(2):203-214. Tawakol A. Disentangling the links between psychosocial
stress and cardiovascular disease. Circ Cardiovasc Imaging.
doi: 10.1080/02664769524627
2020;13(8):e010931.
41. Dalmaijer ES, Nord CL, Astle DE. Statistical power for
cluster analysis. BMC Bioinformatics. 2022;23(1):205. doi: 10.1161/circimaging.120.010931
51. Vaccarino V, Bremner JD. Stress and cardiovascular disease:
doi: 10.1186/s12859-022-04675-1
An update. Nat Rev Cardiol. 2024;21(9):603-616.
42. Lawton M, Ben-Shlomo Y, May MT, et al. Developing and
validating Parkinson’s disease subtypes and their motor doi: 10.1038/s41569-024-01024-y
and cognitive progression. J Neurol Neurosurg Psychiatry. 52. Faust O, Hong W, Loh HW, et al. Heart rate variability for
2018;89(12):1279-1287. medical decision support systems: A review. Comput Biol
Med. 2022;145:105407.
doi: 10.1136/jnnp-2018-318337
doi: 10.1016/j.compbiomed.2022.105407
43. Scitovski R, Sabo K, Martínez-Álvarez F, Ungar Š. Cluster
Analysis and Applications. Berlin: Springer; 2021. 53. Lu L, Zhu T, Morelli D, et al. Uncertainties in the analysis of
heart rate variability: A systematic review. IEEE Rev Biomed
44. Sneath PHA. A method for testing the distinctness of clusters:
A test of the disjunction of two clusters in Euclidean space as Eng. 2024;17:180-196.
measured by their overlap. Math Geol. 1975;7(2):123-143. doi: 10.1109/rbme.2023.3271595
doi: 10.1007/BF02068305 54. Pasquini L, Noohi F, Veziris CR, et al. Dynamic autonomic
nervous system states arise during emotions and manifest in
45. Holtrop J, Bhatt DL, Ray KK, et al. Impact of the 2021
European society for cardiology prevention guideline’s basal physiology. Psychophysiology. 2023;60(4):e14218.
stepwise approach for cardiovascular risk factor treatment doi: 10.1111/psyp.14218
in patients with established atherosclerotic cardiovascular 55. Turcu AM, Ilie AC, Ștefăniu R, et al. The impact of heart rate
disease. Eur J Prev Cardiol. 2024;31(6):754-762.
variability monitoring on preventing severe cardiovascular
doi: 10.1093/eurjpc/zwae038 events. Diagnostics (Basel). 2023;13(14):2382.
46. World Medical Association. World Medical Association doi: 10.3390/diagnostics13142382
Volume 2 Issue 4 (2025) 113 doi: 10.36922/AIH025050006

