Page 118 - AIH-2-4
P. 118
Artificial Intelligence in Health Autonomic nervous system patterns in men
and recent developments. Philos Trans A Math Phys Eng Sci. Cardiol. 2005;104(3):307-313.
2016;374(2065):20150202.
doi: 10.1016/j.ijcard.2004.12.018
doi: 10.1098/rsta.2015.0202
27. Staffini A, Svensson T, Chung UI, Svensson AK. Heart rate
17. Ikotun AM, Absalom E, Abualigah L, Abuhaija B, Jia H. modeling and prediction using autoregressive models and
K-means clustering algorithms: A comprehensive review, deep learning. Sensors (Basel). 2021;22(1):34.
variants analysis, and advances in the era of big data. Inform doi: 10.3390/s22010034
Sci. 2023;622:178-210.
28. Hayano J, Yuda E. Assessment of autonomic function
doi: 10.1016/j.ins.2022.11.139
by long-term heart rate variability: Beyond the classical
18. Sinaga KP, Yang MS. Unsupervised K-Means clustering framework of LF and HF measurements. J Physiol Anthropol.
algorithm. IEEE Access. 2020;8:80716-80727. 2021;40(1):21.
doi: 10.1109/access.2020.2992018 doi: 10.1186/s40101-021-00272-y
19. Ishaque S, Khan N, Krishnan S. Trends in heart-rate 29. Jarczok MN, Weimer K, Braun C, et al. Heart rate variability
variability signal analysis. Front Digit Health. 2021;3:639444. in the prediction of mortality: A systematic review and
meta-analysis of healthy and patient populations. Neurosci
doi: 10.3389/fdgth.2021.639444
Biobehav Rev. 2022;143:104907.
20. Kleiger RE, Stein PK, Bigger JT Jr. Heart rate variability:
Measurement and clinical utility. Ann Noninvasive doi: 10.1016/j.neubiorev.2022.104907
Electrocardiol. 2005;10(1):88-101. 30. Choi A, Shin H. Quantitative analysis of the effect of an
ectopic beat on the heart rate variability in the resting
doi: 10.1111/j.1542-474X.2005.10101.x
condition. Front Physiol. 2018;9:922.
21. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC,
Cohen RJ. Power spectrum analysis of heart rate fluctuations: doi: 10.3389/fphys.2018.00922
A quantitative probe of beat-to-beat cardiovascular control. 31. Immanuel S, Teferra MN, Baumert M, Bidargaddi N. Heart
Science. 1981;213(4504):220-222. rate variability for evaluating psychological stress changes
in healthy adults: A scoping review. Neuropsychobiology.
doi: 10.1126/science.6166045
2023;82(4):187-202.
22. Kleiger RE, Miller JP, Bigger JT Jr., Moss AJ, The
Multicenter Post-Infarction Research Group. Decreased doi: 10.1159/000530376
heart rate variability and its association with increased 32. Ardashev A, Loskutov A, Passman R, Zhelyakov E,
mortality after acute myocardial infarction. Am J Cardiol. Rytkin E, Efimov I. Theoretical and practical aspects of
1987;59(4):256-262. the nonlinear dynamics’ methods of heart rate variability
analyses in tachyarrhythmia patients underwent
doi: 10.1016/0002-9149(87)90795-8
radiofrequency catheter ablation. Cardiovasc Eng Technol.
23. Sammito S, Thielmann B, Böckelmann I. Update: Factors 2025;16(2):190-201.
influencing heart rate variability-a narrative review. Front
Physiol. 2024;15:1430458. doi: 10.1007/s13239-024-00766-7
33. Bauer A, Kantelhardt JW, Bunde A, et al. Phase-rectified
doi: 10.3389/fphys.2024.1430458
signal averaging detects quasi-periodicities in non-
24. Task Force of the European Society of Cardiology and the stationary data. Physica A. 2006;364:423-434.
North American Society of Pacing and Electrophysiology.
Heart rate variability: Standards of measurement, doi: 10.1016/j.physa.2005.08.080
physiological interpretation and clinical use. Circulation. 34. Bauer A, Kantelhardt JW, Barthel P, et al. Deceleration capacity
1996;93(5):1043-1065. of heart rate as a predictor of mortality after myocardial
infarction: Cohort study. Lancet. 2006;367(9523):1674-1681.
doi: 10.1161/01.cir.93.5.1043
doi: 10.1016/S0140-6736(06)68735-7
25. Clifford GD, Mcsharry PE, Tarassenko L. Characterizing
artefact in the normal human 24-hour RR time series to 35. Alberto AC, Pedrosa RC, Zarzoso V, Nadal J. Association
aid identification and artificial replication of circadian between circadian Holter ECG changes and sudden cardiac
variations in human beat to beat heart rate using a simple death in patients with Chagas heart disease. Physiol Meas.
threshold. Comput Cardiol. 2002;29:129-132. 2020;41(2):025006.
doi: 10.1109/CIC.2002.1166724 doi: 10.1088/1361-6579/ab6ebc
26. Chemla D, Young J, Badilini F, et al. Comparison of fast 36. Materko W, Bartels R, Pecanha T, Lima JRP, Carvalho ARS,
Fourier transform and autoregressive spectral analysis for Nadal J. Maximum oxygen uptake prediction model based
the study of heart rate variability in diabetic patients. Int J on heart rate variability parameters for young healthy adult
Volume 2 Issue 4 (2025) 112 doi: 10.36922/AIH025050006

