Page 78 - AIH-2-4
P. 78

Artificial Intelligence in Health                                   Synthetic data for obesity level prediction



            Acknowledgments                                    6.   Shi R, Wang Y, Du M, Shen X, Wang X. A Comprehensive
                                                                  Survey of Synthetic Tabular Data Generation. [arXiv
            None.                                                 Preprint]; 2025.
            Funding                                               doi: 10.48550/arXiv.2504.16506

            None.                                              7.   Hernadez M, Epelde G, Alberdi A, Cilla R, Rankin D.
                                                                  Synthetic  tabular data evaluation in the health domain
            Conflict of interest                                  covering resemblance, utility, and privacy dimensions.
                                                                  Methods Inf Med. 2023;62(S01):e19-e38.
            The authors declare that they have no competing interests.
                                                                  doi: 10.1055/s-0042-1760247
            Author contributions                               8.   Arora A, Arora A. Generative adversarial networks and
                                                                  synthetic patient data: Current challenges and future
            Conceptualization: All authors                        perspectives. Fut Healthc J. 2022;9(2):190-193.
            Formal analysis: All authors
            Investigation: All authors                            doi: 10.7861/fhj.2022-0013
            Methodology: Hakan Alp Eren, Sinem Bozkurt Keser   9.   Sámano R, Lopezmalo-Casares S, Martínez-Rojano H, et al.
            Writing – original draft: All authors                 Early life determinants of overweight and obesity in a sample
            Writing – review & editing: All authors               of Mexico city preschoolers. Nutrients. 2025;17(4):697.
                                                                  doi: 10.3390/nu17040697
            Ethics approval and consent to participate
                                                               10.  Sobas K, Suliga E, Bryk P, Gluszek S. Dietary patterns and
            Not applicable.                                       nutritional status in bariatric surgery candidates-a cross-
                                                                  sectional study. Nutrients. 2025;17(4):716.
            Consent for publication
                                                                  doi: 10.3390/nu17040716
            Not applicable.                                    11.  Colonnello E, Libotte F, Masi D,  et al. Eating behavior

            Availability of data                                  patterns, metabolic parameters and circulating oxytocin
                                                                  levels in patients with obesity: An exploratory study. Eating
            The dataset used in this study is publicly available from the   Weight Disord. 2025;30(1):6.
            University of California, Irvine ML Repository under the      doi: 10.1007/s40519-024-01698-w
            title Estimation of Obesity Levels Based on Eating Habits and   12.  El-Sehrawy AAMA, Khachatryan LG, Kubaev A,  et al.
            Physical Condition: https://archive.ics.uci.edu/dataset/544.  Triglyceride-glucose index: A potent predictor of metabolic
            References                                            risk factors and eating behavior patterns among obese
                                                                  individuals. BMC Endocr Disord. 2025;25(1):71.
            1.   Ural D, Kılıçkap M, Göksülük H,  et al. Data on      doi: 10.1186/s12902-025-01887-3
               prevalence of obesity and waist circumference in Turkey:
               Systematic  review,  meta-analysis  and  meta-regression  of   13.  Kuckuck S, Van der Valk ES, Lengton R, et al. Long-term
               epidemiological studies on cardiovascular risk factors. Turk   hair cortisone and perceived stress are associated with long-
               J Cardiol Arch. 2018;46(7):577-590.                term hedonic eating tendencies in patients with obesity.
                                                                  Psychoneuroendocrinology. 2025;171:107224.
               doi: 10.5543/tkda.2018.62200
                                                                  doi: 10.1016/j.psyneuen.2024.107224
            2.   Yavuz R, Tontuş H. The clinical approach to the obesity in
               adult, adolescent and pediatric age groups. J Exp Clin Med.   14.  Palechor FM, De la Hoz Manotas A. Dataset for estimation of
               2013;30(1s):69-74.                                 obesity levels based on eating habits and physical condition
                                                                  in individuals from Colombia, Peru and Mexico. Data Brief.
            3.   Rosengren A. Obesity and cardiovascular health: The size of   2025;25:104344.
               the problem. Eur Heart J. 2021;42(34):3404-3406.
                                                                  doi: 10.1016/j.dib.2019.104344
               doi: 10.1093/eurheartj/ehab518
                                                               15.  Helforoush Z, Sayyad H. Prediction and classification of
            4.   Dönder E, Önalan E. Definition, epidemiology, and clinical   obesity risk based on a hybrid metaheuristic machine
               evaluation of obesity. Fırat Med J. 2018;23(3):1-4.  learning approach. Front Big Data. 2024;7:1469981.
            5.   UCI Machine Learning Repository.  Estimation of Obesity      doi: 10.3389/fdata.2024.1469981
               Levels Based On Eating Habits and Physical Condition.   16.  Ayub H, Khan MA, Shehryar Ali Naqvi S, et al. Unraveling
               Irvine: UCI Machine Learning Repository; 2019.
                                                                  the potential of attentive Bi-LSTM for accurate obesity
               doi: 10.24432/C5H31Z                               prognosis: Advancing public health towards sustainable


            Volume 2 Issue 4 (2025)                         72                          doi: 10.36922/AIH025140027
   73   74   75   76   77   78   79   80   81   82   83