Page 78 - AIH-2-4
P. 78
Artificial Intelligence in Health Synthetic data for obesity level prediction
Acknowledgments 6. Shi R, Wang Y, Du M, Shen X, Wang X. A Comprehensive
Survey of Synthetic Tabular Data Generation. [arXiv
None. Preprint]; 2025.
Funding doi: 10.48550/arXiv.2504.16506
None. 7. Hernadez M, Epelde G, Alberdi A, Cilla R, Rankin D.
Synthetic tabular data evaluation in the health domain
Conflict of interest covering resemblance, utility, and privacy dimensions.
Methods Inf Med. 2023;62(S01):e19-e38.
The authors declare that they have no competing interests.
doi: 10.1055/s-0042-1760247
Author contributions 8. Arora A, Arora A. Generative adversarial networks and
synthetic patient data: Current challenges and future
Conceptualization: All authors perspectives. Fut Healthc J. 2022;9(2):190-193.
Formal analysis: All authors
Investigation: All authors doi: 10.7861/fhj.2022-0013
Methodology: Hakan Alp Eren, Sinem Bozkurt Keser 9. Sámano R, Lopezmalo-Casares S, Martínez-Rojano H, et al.
Writing – original draft: All authors Early life determinants of overweight and obesity in a sample
Writing – review & editing: All authors of Mexico city preschoolers. Nutrients. 2025;17(4):697.
doi: 10.3390/nu17040697
Ethics approval and consent to participate
10. Sobas K, Suliga E, Bryk P, Gluszek S. Dietary patterns and
Not applicable. nutritional status in bariatric surgery candidates-a cross-
sectional study. Nutrients. 2025;17(4):716.
Consent for publication
doi: 10.3390/nu17040716
Not applicable. 11. Colonnello E, Libotte F, Masi D, et al. Eating behavior
Availability of data patterns, metabolic parameters and circulating oxytocin
levels in patients with obesity: An exploratory study. Eating
The dataset used in this study is publicly available from the Weight Disord. 2025;30(1):6.
University of California, Irvine ML Repository under the doi: 10.1007/s40519-024-01698-w
title Estimation of Obesity Levels Based on Eating Habits and 12. El-Sehrawy AAMA, Khachatryan LG, Kubaev A, et al.
Physical Condition: https://archive.ics.uci.edu/dataset/544. Triglyceride-glucose index: A potent predictor of metabolic
References risk factors and eating behavior patterns among obese
individuals. BMC Endocr Disord. 2025;25(1):71.
1. Ural D, Kılıçkap M, Göksülük H, et al. Data on doi: 10.1186/s12902-025-01887-3
prevalence of obesity and waist circumference in Turkey:
Systematic review, meta-analysis and meta-regression of 13. Kuckuck S, Van der Valk ES, Lengton R, et al. Long-term
epidemiological studies on cardiovascular risk factors. Turk hair cortisone and perceived stress are associated with long-
J Cardiol Arch. 2018;46(7):577-590. term hedonic eating tendencies in patients with obesity.
Psychoneuroendocrinology. 2025;171:107224.
doi: 10.5543/tkda.2018.62200
doi: 10.1016/j.psyneuen.2024.107224
2. Yavuz R, Tontuş H. The clinical approach to the obesity in
adult, adolescent and pediatric age groups. J Exp Clin Med. 14. Palechor FM, De la Hoz Manotas A. Dataset for estimation of
2013;30(1s):69-74. obesity levels based on eating habits and physical condition
in individuals from Colombia, Peru and Mexico. Data Brief.
3. Rosengren A. Obesity and cardiovascular health: The size of 2025;25:104344.
the problem. Eur Heart J. 2021;42(34):3404-3406.
doi: 10.1016/j.dib.2019.104344
doi: 10.1093/eurheartj/ehab518
15. Helforoush Z, Sayyad H. Prediction and classification of
4. Dönder E, Önalan E. Definition, epidemiology, and clinical obesity risk based on a hybrid metaheuristic machine
evaluation of obesity. Fırat Med J. 2018;23(3):1-4. learning approach. Front Big Data. 2024;7:1469981.
5. UCI Machine Learning Repository. Estimation of Obesity doi: 10.3389/fdata.2024.1469981
Levels Based On Eating Habits and Physical Condition. 16. Ayub H, Khan MA, Shehryar Ali Naqvi S, et al. Unraveling
Irvine: UCI Machine Learning Repository; 2019.
the potential of attentive Bi-LSTM for accurate obesity
doi: 10.24432/C5H31Z prognosis: Advancing public health towards sustainable
Volume 2 Issue 4 (2025) 72 doi: 10.36922/AIH025140027

