Page 79 - AIH-2-4
P. 79

Artificial Intelligence in Health                                   Synthetic data for obesity level prediction



               cities. Bioengineering (Basel). 2024;11(6):533.  28.  Ganie SM, Reddy BB, Rege M. An investigation of ensemble
                                                                  learning techniques for obesity risk prediction using lifestyle
               doi: 10.3390/bioengineering11060533
                                                                  data. Decis Analyt J. 2025;14:100539.
            17.  Shakti MAS, Vijayalakshmi M, Kumar N, Vaidhehi M.
               Analysis on Various Machine Learning Framework      doi: 10.1016/j.dajour.2024.100539
               for Obesity Level Prediction. In:  Proceedings of the   29.  Nagarajan SG, Balasubramanian V, Gonugunta P, Gudla SK.
               1   International Conference on Contemporary Global   Obesity level prediction using deep learning approach-a
                st
               Challenges and Urban Innovations (ICCGUI) IEEE. Vol. 1;   comparative analysis. Eng Appl Sci Res. 2024;51(4):540-554.
               2024. p. 406-411.
                                                               30.  Umoh PN, Nneji GU, Monday HN,  et al. Optimizing
               doi: 10.1109/IC-CGU58078.2024.10530812             machine learning classifiers and feature selection techniques
            18.  Yağmur N. A hybrid approach to obesity level determination   for obesity levels estimation using physical habits and
               with decision tree and pelican optimization algorithm. J Sci   dietary data. World Sci News. 2024;198:326-353.
               Rep A. 2024;57:97-109.                             doi: 10.1142/WSN198(2024)325-353
               doi: 10.59313/jsr-a.1447814                     31.  Vairachilai S, Periyanayagi S, Raja SPR. PIPR machine
            19.  Özkurt C. Examination and evaluation of obesity risk factors   learning model: Obesity impact analysis. Open Biomed Eng
               with explainable artificial intelligence.  Comput Electron   J. 2024;18(1):1-20.
               Med. 2024;1(1):12-17.                              doi: 10.2174/0118741207289421240430115207
               doi: 10.69882/adba.cem.2024072                  32.  Forte P, Encarnação S, Monteiro AM, et al. A deep learning
            20.  Wang X. Predicting obesity risk through lifestyle habits:   neural network to classify obesity risk in portuguese
               A  comparative analysis of machine learning models.  E3S   adolescents based on physical fitness levels and body mass
               Web Conf. 2024;385:05037.                          index percentiles: Insights for national health policies. Behav
                                                                  Sci. 2023;13(7):522.
               doi: 10.1051/e3sconf/202455305037
                                                                  doi: 10.3390/bs13070522
            21.  Okpe  OA,  Odey  JA, Abiodum OJ.  A  novel  multi-class
               classification of obesity level using artificial neural network.   33.  Yağın FH, Gülü M, Görmez Y, et al. Estimation of obesity
               Int J Adv Multidiscip Res Studies. 2024;4(3):1374-1379.  levels with a trained neural network approach optimized by
                                                                  the Bayesian technique. Appl Sci. 2023;13(6):3875.
            22.  Azad M, Khan MFK, El-Ghany SA. XAI-enhanced machine
               learning for obesity risk classification: A stacking approach      doi: 10.3390/app13063875
               with LIME explanations. IEEE Access. 2025;13:13847-13865.  34.  Gözükara Bağ HG, Yağın FH, Görmez Y, et al. Estimation
               doi: 10.1109/ACCESS.2025.3530840                   of obesity levels through the proposed predictive approach
                                                                  based on physical activity and nutritional habits. Diagnostics.
            23.  Solomon DD, Khan S, Garg S, et al. Hybrid majority voting:   2023;13(18):2949.
               Prediction and classification model for obesity. Diagnostics
               (Basel). 2023;13(15):2610.                         doi: 10.3390/diagnostics13182949
               doi: 10.3390/diagnostics13152610                35.  Yang Y,  Khorshidi HA,  Aickelin  U.  A  review on over-
                                                                  sampling techniques in classification of multi-class
            24.  Kaur R, Kumar R, Gupta M. Predicting risk of obesity and   imbalanced datasets: Insights for medical problems. Front
               meal planning to reduce obesity in adulthood using artificial   Digit Health. 2024;6:1430245.
               intelligence. Endocrine. 2022;78(3):458-469.
                                                                  doi: 10.3389/fdgth.2024.1430245
               doi: 10.1007/s12020-022-03215-4
                                                               36.  Lemaître  G, Nogueira  F,  Aridas  CK. Imbalanced-learn:
            25.  Muliawan A, Fauziah DA, Afrianto E. Obesity risk prediction   A python toolbox to tackle the curse of imbalanced datasets
               using random forest based on eating habit parameters.   in machine learning. J Mach Learn Res. 2017;18(17):1-5.
               INSIDE J. 2024;2(1):13-18.
                                                               37.  Xu L, Skoularidou M, Cuesta-Infante A, Veeramachaneni
            26.  Choudhuri  A.  A  Hybrid  Machine  Learning  Model  for   K. Modeling Tabular Data using Conditional GAN. In:
               Estimation of Obesity Levels. In:  Proceedings of the   Advances in Neural Information Processing Systems; 2019.
               International Conference on Data Management, Analytics   p.  32. Available from: https://proceedings.neurips.cc/
               and Innovation. Vol. 137; 2023. p. 414-423.        paper/2019/hash/254ed7d2de3b23ab10936522dd547b78-
               doi: 10.1007/978-981-19-2600-6_22                  abstract.html [Last accessed on 2024 Dec 12].
            27.  Cervantes  RC,  Palacio  ALH.  Estimation  of  obesity  levels   38.  Patki N, Wedge R, Veeramachaneni K. The Synthetic Data
               based on computational intelligence.  Inf  Med  Unlocked.   Vault. In:  International Conference on  Data Science and
               2020;21:100472.                                    Advanced Analytics (DSAA); 2016. p. 399-410.
               doi: 10.1016/j.imu.2020.100472                     doi: 10.1109/DSAA.2016.49


            Volume 2 Issue 4 (2025)                         73                          doi: 10.36922/AIH025140027
   74   75   76   77   78   79   80   81   82   83   84