Page 226 - AJWEP-22-4
P. 226

Ma, et al.

                32.  Mulky CT, Niemeyer EK. Computational study of the   temperature  characteristics  in  pulverized  biomass  dust
                   effects of density, fuel content, and moisture content on   explosions. Renew Energy. 2018;122:45-54.
                   smoldering propagation of cellulose and hemicellulose      doi: 10.1016/j.renene.2018.01.063
                   mixtures. Proc Combust Inst. 2019;37(3):4091-4098.  39.  Liang Y, Ries ME, Hine PJ. Pyrolysis activation energy
                   doi: 10.1016/j.proci.2018.06.164                     of  cellulosic  fibres  investigated  by  a  method  derived
                33.  Azam MS, Lukasz N, Yousaf MA, et al. Combustion and   from  the  first  order  global  model.  Carbohydr Polym.
                   explosion characteristics of pulverised wood, valorized   2023;305:120518.
                   with mild pyrolysis in pilot scale installation,  using      doi: 10.1016/j.carbpol.2022.120518
                   the modified ISO 1m  dust explosion vessel. Appl Sci.   40.  Lei J, Wang Y, Wang Q, et al. Evaluation of kinetic and
                                     3
                   2022,12(24):12928-12928.                             thermodynamic parameters of pyrolysis and combustion
                   doi: 10.3390/APP122412928                            processes for bamboo using thermo gravimetric analysis.
                34.  Mularski J, Li J.  A  review on biomass ignition:   Processes. 2024;12(11):2458-2458.
                   Fundamental  characteristics,  measurements,  and     doi: 10.3390/PR12112458
                   predictions. Fuel. 2023;340:127526.              41.  Chen  D,  Cen  K,  Zhuang  X,  et al. Insight into
                   doi: 10.1016/J.FUEL.2023.127526                      biomass pyrolysis mechanism based on cellulose,
                35.  Li J, Paul CM, Younger LP,  et al. Prediction of high-  hemicellulose, and lignin: Evolution of volatiles
                   temperature  rapid  combustion behaviour  of woody   and kinetics, elucidation of reaction pathways, and
                   biomass particles. Fuel. 2016;165:205-214.           characterization  of  gas,  biochar  and  bio‐oil. Combust
                   doi: 10.1016/j.fuel.2015.10.061                      Flame. 2022;242:112142.
                36.  Wang Q. Study on the Methane-Air Deflagration Flames      doi: 10.1016/J.COMBUSTFLAME.2022.112142
                   Propagation  Characteristics  in an Square Plexiglass   42.  Wang Q, Liu K, Wang S. Effect of porosity on ignition
                   Tube. China: University of Science and Technology of   and  burning  behavior  of cellulose  materials.  Fuel.
                   China; 2013.                                         2022;322:124158.
                37.  Dong Z, Fu B, Chu Y, et al. Explosion characteristics of      doi: 10.1016/J.FUEL.2022.124158
                   wood dust and its suppression in typical powder-related   43.  Bear  J.  Dynamics of  Fluids  in  Porous Media.  United
                   environments. Powder Technol. 2024;435:119389.       States: Courier Corporation; 2013.
                   doi: 10.1016/J.POWTEC.2024.119389                44.  Drysdale D. An Introduction to Fire Dynamics. United
                38.  Jiang H, Bi M, Li B, et al. Combustion behaviours and   States: John Wiley and Sons; 2011.












































                Volume 22 Issue 4 (2025)                       218                           doi: 10.36922/AJWEP025240193
   221   222   223   224   225   226   227   228   229   230   231