Page 169 - AJWEP-22-5
P. 169
Emission and carbon policy analysis
2023;42(12):95-104. achieving an 80% reduction in Co emissions by 2050.
2
6. Kan L. Study on China’s 2060 carbon neutrality target Energy Policy. 2012;41:584-598.
and its implementation path. Ecol Econ. 2021;37(11):6. doi: 10.1016/j.enpol.2011.11.020
7. Liu Z, Zhu K, Yan J, et al. Analysis of carbon emission 19. Marsden G, Mullen C, Bache I, Bartle I, Flinders M.
reduction potential of the power sector under industrial Carbon reduction and travel behaviour: Discourses,
structure optimisation. J Ind Eng Eng Manage. disputes and contradictions in governance. Transp
2014;28(2):87-92+86. Policy. 2014;35:71-78.
doi: 10.13587/j.cnki.jieem.2014.02.004 doi: 10.1016/j.tranpol.2014.05.012
8. Al-Amin AQ, Rasiah R, Chenayah S. Prioritizing climate 20. Dutta V, Dasgupta P, Hultman N, Gadag G. Evaluating
change mitigation: An assessment using Malaysia to expert opinion on India’s climate policy: Opportunities
reduce carbon emissions in future. Environ Sci Policy. and barriers to low-carbon inclusive growth. Clim Dev.
2015;50:24-33. 2016;8(4):336-350.
doi: 10.1016/j.envsci.2015.02.002 doi: 10.1080/17565529.2015.1067181
9. Ahmed M, Shuai C, Ahmed M. Influencing factors of 21. He J, Lu L, Wang HL. Win-win path analysis of economic
carbon emissions and their trends in china and india: growth and CO emission reduction. China Popul Resour
2
A machine learning method. Environ Sci Pollut Res. Environ. 2018;28(10):9.
2022;29(32):48424-48437. 22. Jiang Y, Tang X, Ren KP, Ding I. A study on the drivers of
doi: 10.1007/s11356-022-18711-3 pollution and carbon reduction in China based on double
10. Han W, Hui L, Han W, Shulan W, Wenjie Z. Study on nested sda. Syst Eng Theor Pract. 2022;42(12):11.
the difference between pollution reduction and carbon 23. Xu W. Improving tax policies in support of green
reduction and regional economic development level in development: Top-level design and policy synergy. Int
China. J Environ Eng Technol. 2022;12(5):1584-1592. Taxation China. 2023;(4):9-14.
doi: 10.12153/j.issn.1674-991X.20210268 doi: 10.19376/j.cnki.cn10-1142/f.2023.04.007
11. Zhang Z, Zhang T, Feng D. Regional differences, dynamic 24. Ma H, Zhang B. A characterisation of China’s open
evolution and convergence of carbon emission intensity public data policy supply based on the lda model. Mod
in China. J Quant Technol Econ. 2022;39(4):67-87. Intell. 2023;43(8):35-44.
doi: 10.13653/j.cnki.jqte.2022.04.001 25. Jiang T, Xiao W, Zhang C, Ge B. A time series text
12. Farahani HR, Rassafi AA, Zhang K, Nie YM. A multi- visualisation method based on Sankey diagram. Comput
hop control scheme for traffic management. Transp Res Appl Res. 2016;33(9):6.
Part C Emerg Technol. 2021;130:103278. 26. Blei DM, Ng AY, Jordan MI. Latent dirichlet allo-cation.
doi: 10.1016/j.trc.2021.103278 J Mach Learn Res. 2003;3:993-1022.
13. Zhang S, Li M, Wang C. Provincial carbon emission 27. Cheng L, Lu XY, Xiao LM, Bai Y, Li XY. Water supply,
trends and differentiated peak pathways in China. China use, consumption, discharge and return processes and their
Popul Resour Environ. 2021;31(9):45-54. Sankey diagrams. Hydropower Energy Sci. 2021;39(6):5.
14. Song P, Zhang HM, Mao XQ. Carbon emission reduction 28. Zhang H, Zhang Y, Liu J, Chen T. Quantitative evaluation
pathways in Chongqing towards peak carbon targets. of China’s industrial chain policy under the objective
China Environ Sci. 2022;42(3):1446-1455. of industrial chain modernisation. Stat Inform Forum.
doi: 10.19674/j.cnki.issn1000-6923.20210923.006 2023;38(9):32-46.
15. Neha S, Sharma RL, Kundan Y. Sustainable development 29. Sakshi, Kukreja V. Recent trends in mathematical
by carbon emission reduction and its quantification: An expressions recognition: An lda-based analysis. Expert
overview of current methods and best practices. Asian J Syst Appl. 2023;213:119028.
Civil Eng Build Hous. 2023;24(8):3797-3822. doi: 10.1016/j.eswa.2022.119028
doi: 10.1007/s42107-023-00732-z 30. Song WL, Xiao RL. Evolutionary paths of policy
16. Halsns K, Some S, Pathak M. Beyond synergies: instruments in China’s photovoltaic industry and their
Understanding sdg trade-offs, equity and implementation implications. J Inf. 2022;41(1):177-184.
challenges of sectoral climate change mitigation options. doi: 10.39674/j.cnki.issn1000-7490.2022.01.020
Sustain Sci. 2024;19(1):35-49. 31. Xue F, Zhou M, Liu J. Can industrial transformation
doi: 10.1007/s11625-023-01322-3 and upgrading reduce carbon emissions? Evidence
17. Xiao T, Shu Y, Li H, et al. Assessment of CO synergistic from national industrial transformation and upgrading
2
benefits of air pollution control policies in Taiyuan City’s demonstration zones. Ind Econ Res. 2023;(2):1-13.
14 five-year plan. Environ Sci. 2024;45(3):1265-1273. doi: 10.13269/j.cnki.ier.2023.02.002
th
doi: 10.13227/j.hjkx.202304046 32. Bakary K, Mouhamadou D, Seydou T. Contribution based
18. Ashina S, Fujino J, Masui T, Ehara T, Hibino G. on neurons networks for the prediction of greenhouse
A roadmap towards a low-carbon society in japan gas emissions in a handling port. Asian J Water Environ
using backcasting methodology: Feasible pathways for Pollut. 2024;21(6):261-269.
Volume 22 Issue 5 (2025) 163 doi: 10.36922/AJWEP025160117

