Page 184 - AJWEP-22-5
P. 184

Wang, et al.

                   A  literature  review. In:  Águas  e  Florestas:  Desafios   the phytotoxicity and genotoxicity  of aluminum  and
                   Para Conservação e Utilização. 1  ed. Brasil: Editora   their alleviation strategies:  A  review.  Chemosphere.
                                                st
                   Científica Digital; 2021. p. 131-148.                2021;278:130384.
                   doi: 10.37885/210404155                              doi: 10.1016/j.chemosphere.2021.130384
                31.  Mierziak J, Kostyn K, Kulma A. Flavonoids as important   41.  Lin ZH, Chen LS, Chen RB,  et al. Root release  and
                   molecules of plant interactions  with the environment.   metabolism of organic acids in tea plants in response to
                   Molecules. 2014;19(10):16240-16265.                  phosphorus supply. J Plant Physiol. 2011;168(7):644-652.
                   doi: 10.3390/molecules191016240                      doi: 10.1016/j.jplph.2010.09.017
                32.  Samanta A, Das G, Das S. Roles of flavonoids in plants.   42.  Luo J,  Liu  Y, Zhang H,  et al. Metabolic alterations
                   Int J Pharm Sci Technol. 2011;6:12-35.               provide insights into Stylosanthes roots responding to
                33.  Baskar  V,  Venkatesh R, Ramalingam S. Flavonoids   phosphorus deficiency. BMC Plant Biol. 2020;20(1):85.
                   (antioxidants systems) in higher plants and their response      doi: 10.1186/s12870-020-2283-z
                   to stresses. In: Gupta DK, Palma JM, Corpas FJ, editors.   43.  Saddique  M,  Kamran  M,  Shahbaz  M.  Differential
                   Antioxidants and Antioxidant Enzymes in Higher Plants.   responses of plants to biotic  stress and the role of
                   Berlin: Springer International Publishing; 2018. p. 253-268.  metabolites.  In:  Ahmad P,  Ahanger MA, Singh  VP,
                   doi: 10.1007/978-3-319-75088-0_12                    Tripathi DK,  Alam P,  Alyemeni MN,  editors.  Plant
                34.  Luo D, Li Q, Pang F, et al. Exploration of the commonalities   Metabolites and Regulation Under Environmental Stress.
                   and specificities in wheat respond to aluminum toxicity   Ch. 4. United States: Academic Press; 2018. p. 69-87.
                   and low phosphorus via transcriptomics  and targeted      doi: 10.1016/B978-0-12-812689-9.00004-2
                   metabolomics study. Int J Mol Sci. 2024;25:9273.  44.  Lephatsi  M, Nephali  L,  Meyer  V,  et  al. Molecular
                   doi: 10.20944/preprints202408.0689.v1                mechanisms  associated  with microbial  biostimulant-
                35.  Ma D, Guo Y, Ali I, Lin J, Xu Y, Yang M. Accumulation   mediated growth enhancement, priming and drought stress
                   characteristics  of  plant  flavonoids  and  effects  of   tolerance in maize plants. Sci Rep. 2022;12(1):10450.
                   cultivation  measures on their  biosynthesis:  A  review.      doi: 10.1038/s41598-022-14570-7
                   Plant Physiol Biochem. 2024;215:108960.          45.  Deng J, Qin W, Yang C, et al. Seed quality deterioration
                   doi: 10.1016/j.plaphy.2024.108960                    dynamics  for  isoflavones  biosynthesis  in  soybean
                36.  Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant   (Glycine max L. Merr.) seeds against field mildew stress.
                   flavonoids: Classification, distribution, biosynthesis, and   Acta Physiol Plant. 2019;41(5):57.
                   antioxidant activity. Food Chem. 2022;383:132531.     doi: 10.1007/s11738-019-2845-6
                   doi: 10.1016/j.foodchem.2022.132531              46.  Trush K, Pal’ove-Balang  P. Biosynthesis and role of
                37.  Shomali A, Das S, Arif N, et al. Diverse physiological   isoflavonoids in legumes under different environmental
                   roles of flavonoids in plant environmental stress responses   conditions. Plant Stress. 2023;8:100153.
                   and tolerance. Plants (Basel). 2022;11(22):3158.     doi: 10.1016/j.stress.2023.100153
                   doi: 10.3390/plants11223158                      47.  Woźniak A, Drzewiecka K, Kęsy J, et al. The influence
                38.  Harborne JB, Williams CA. Advances in flavonoid research   of lead on generation of signalling  molecules  and
                   since 1992. Phytochemistry. 2000;55(6):481-504.      accumulation of flavonoids in pea seedlings in response
                   doi: 10.1016/S0031-9422(00)00235-1                   to pea aphid infestation. Molecules. 2017;22(9):1404.
                39.  Zhou Y, Olt  P, Neuhäuser B,  et  al. Loss of LaMATE      doi: 10.3390/molecules22091404
                   impairs  isoflavonoid  release  from  cluster  roots  of   48.  Kochian LV, Piñeros MA,  Liu J, Magalhaes JV.
                   phosphorus-deficient  white  lupin.  Physiol Plant.   Plant adaptation  to acid soils:  The molecular  basis
                   2021;173(3):1207-1220.                               for crop aluminum  resistance.  Annu Rev Plant Biol.
                   doi: 10.1111/ppl.13515                               2015;66(1):571-598.
                40.  Chandra J, Keshavkant S.  Mechanisms underlying      doi: 10.1146/annurev-arplant-043014-114822





















                Volume 22 Issue 5 (2025)                       178                          doi: 10.366922/AJWEP025150108
   179   180   181   182   183   184   185   186   187   188   189