Page 183 - AJWEP-22-6
P. 183
Zn accumulating behavior of L. uncinatus
doi: 10.1023/B: PLSO.0000035551.22918.01 22. De Lorenzo C, Iannetta PP, Fernandez-Pascual M,
8. Morton-Bermea O, Hernández-Álvare E, Gaso I, et al. Oxygen diffusion in lupin nodules: II.
Segovia N. Heavy metal concentrations in surface Mechanisms of diffusion barrier operation. J Exp Bot.
soils from Mexico City. Bull Environ Contam Toxicol. 1993;44(9):1469-1474.
2002;68(3):383-388. doi: 10.1093/jxb/44.9.1469
doi: 10.1007/s001280265 23. Iannetta PP, De Lorenzo C, James EK, et al. Oxygen
9. Nriagu JO, Pacyna JM. Quantitative assessment of diffusion in lupin nodules: I. Visualization of diffusion
worldwide contamination of air, water and soils by trace barrier operation. J Exp Bot. 1993;44(9):1461-1467.
metals. Nature. 1988;333(6169):134-139. 24. Tang C, Robson AD. Lupinus species differ in their
doi: 10.1038/333134a0 requirements for iron. Plant Soil. 1993;157(1):11-18.
10. Ahmad E, Zaidi A, Khan MS, Oves M. Heavy metal doi: 10.1007/BF02390222
toxicity to symbiotic nitrogen-fixing microorganism and 25. Fernández-Pascual M, De Lorenzo C, De Felipe M,
host legumes. In: Toxicity of Heavy Metals to Legumes et al. Possible reasons for relative salt stress tolerance
and Bioremediation. U.S.A: Springer; 2012. p. 29-44. in nodules of white lupin cv. Multolupa. J Exp Bot.
11. Lock K, Janssen CR. Ecotoxicity of zinc in spiked 1996;47(11):1709-1716.
artificial soils versus contaminated field soils. Environ doi: 10.1093/jxb/47.11.1709
Sci Technol. 2001;35(21):4295-4300. 26. Hopmans JW, Qureshi AS, Kisekka I, et al. Critical
doi: 10.1021/es0100219 knowledge gaps and research priorities in global soil
12. Kabata-Pendias A. Trace Elements in Soils and Plants. salinity. Adv Agron. 2021;169:1-191.
Boca Ratón, Florida: CRC Press; 2010. doi: 10.1016/bs.agron.2021.03.001
13. Kiesken L. Zinc Heavy Metals in Soils. London: Blackie 27. Reay PF, Waugh C. Mineral-element composition
Academic and Professional; 1995. p. 284-305. of Lupinus albus and Lupinus angustifolius in
14. Chaney RL. Plant uptake of inorganic waste constituents. relation to manganese accumulation. Plant Soil.
In: Land Treatment of Hazardous Wastes. New Jersey: 1981;60(3):435-444.
Noyes Data Corp; 1983. 50-76. doi: 10.1007/BF02149639
15. Chaney RL. Improving metal hyperaccumulator wild 28. Carpena R, Peñalosa J, Esteban E, et al. Effects of As and
plants to develop commercial phytoextraction systems: Cd on Lupinus albus L. potential use in phytoremediation.
Approaches and progress. In: Phytoremediation of In: Phytoremediation of trace elements in contaminated
Contaminated Soil and Water. Boca Raton, Florida: soils and waters (with special emphasis on Zn, Cd, Pb
Lewis, CRC Press; 1999. p. 129-158. and As). Cost Action 837 WG2 Workshop 2001. p. 55-57.
16. McGrath S, Dunham S, Correll R. Potential for 29. Vera R, Millán R, Schmid T, Tallos A, Recreo F. Behaviour
phytoextraction of zinc and cadmium from soils using of mercury in the soil-plant system. Application to
hyperaccumulator plants. In: Phyoremediation of phytoremediation studies. In: Sustainable use and
Contaminated Soil and Water. New York: Lewis; 2000. Management of Soils in Arid and Semi Arid Regions.
p. 129-158. Vol. 2. Cartegena, Spain: Quaderna; 2002. p. 482-483.
17. Salt DE, Smith RD, Raski I. Phytoremediation. Annu 30. Ximénez-Embún P, Madrid-Albarrán Y, Cámara C,
Rev Plant Physiol Plant Mol Biol. 1998;49(1):643-668. Cuadrado C, Burbano C, Múzquiz M. Evaluation of
doi: 10.1146/annurev.arplant.49.1.643 Lupinus species to accumulate heavy metals from waste
18. Zhao FJ, Lombi E, McGrath SP. Assessing the potential waters. Int J Phytoremediation. 2001;3(4):369-379.
for zinc and cadmium phytoremediation with the doi: 10.1080/15226510108500065
hyperaccumulator Thlaspi caerulescens. Plant Soil. 31. Zornoza P, Vázquez S, Esteban E, Fernández-Pascual M,
2003;249(1):37-43. Carpena R. Cadmium-stress in nodulated white lupin:
doi: 10.1023/A:1022530217289 Strategies to avoid toxicity. Plant Physiol Biochem.
19. Long X, Yang X, Ni W. Advance and perspectives in 2002;40(12):1003-1009.
technologies for remediation of heavy metal polluted doi: 10.1016/S0981-9428(02)01464-X
soils. Ying Yong Sheng Tai Xue Bao. 2002;13:757-762. 32. Pastor J, Hernández AJ, Prieto N, Fernández-Pascual M.
20. Oubohssaine M, Dahmani I. Phytoremediation: Accumulating behaviour of Lupinus albus L. Growing
Harnessing plant power and innovative technologies for in a normal and a decalcified calcic luvisol polluted with
effective soil remediation. Plant Stress. 2024;14:100578. Zn. J Plant Physiol. 2003;160(12):1457-1466.
doi: 10.1016/j.stress.2024.100578 doi: 10.1078/0176-1617-01007
21. Mocek-Płóciniak A, Mencel J, Zakrzewski W, 33. Gutiérrez-Ginés MJ, Hernández AJ, Pérez-Leblic MI,
Roszkowski S. Phytoremediation as an effective remedy Pastor J, Vangronsveld J. Phytoremediation of soils
for removing trace elements from ecosystems. Plants co-contaminated by organic compounds and heavy
(Basel). 2023;12(8):1653. metals: Bioassays with Lupinus luteus L. And
doi: 10.3390/plants12081653 associated endophytic bacteria. J Environ Manage.
Volume 22 Issue 6 (2025) 177 doi: 10.36922/AJWEP025140101

