Page 183 - AJWEP-22-6
P. 183

Zn accumulating behavior of L. uncinatus

                   doi: 10.1023/B: PLSO.0000035551.22918.01         22.  De Lorenzo C, Iannetta PP, Fernandez-Pascual  M,
                8.  Morton-Bermea  O, Hernández-Álvare  E, Gaso I,      et al.  Oxygen  diffusion  in  lupin  nodules:  II.
                   Segovia N. Heavy metal  concentrations  in surface   Mechanisms  of  diffusion  barrier  operation.  J  Exp Bot.
                   soils from Mexico City. Bull Environ Contam Toxicol.   1993;44(9):1469-1474.
                   2002;68(3):383-388.                                  doi: 10.1093/jxb/44.9.1469
                   doi: 10.1007/s001280265                          23.  Iannetta  PP, De Lorenzo  C, James  EK,  et  al. Oxygen
                9.  Nriagu  JO, Pacyna  JM. Quantitative  assessment  of   diffusion in lupin nodules: I. Visualization of diffusion
                   worldwide contamination of air, water and soils by trace   barrier operation. J Exp Bot. 1993;44(9):1461-1467.
                   metals. Nature. 1988;333(6169):134-139.          24.  Tang C, Robson  AD.  Lupinus  species  differ  in  their
                   doi: 10.1038/333134a0                                requirements for iron. Plant Soil. 1993;157(1):11-18.
                10.  Ahmad E, Zaidi A, Khan MS, Oves M. Heavy metal      doi: 10.1007/BF02390222
                   toxicity to symbiotic nitrogen-fixing microorganism and   25.  Fernández-Pascual M, De Lorenzo C, De Felipe M,
                   host legumes. In: Toxicity of Heavy Metals to Legumes   et al. Possible reasons for relative salt stress tolerance
                   and Bioremediation. U.S.A: Springer; 2012. p. 29-44.  in  nodules  of white  lupin  cv. Multolupa.  J  Exp  Bot.
                11.  Lock K, Janssen CR. Ecotoxicity  of zinc in spiked   1996;47(11):1709-1716.
                   artificial  soils  versus  contaminated  field  soils.  Environ      doi: 10.1093/jxb/47.11.1709
                   Sci Technol. 2001;35(21):4295-4300.              26.  Hopmans JW, Qureshi  AS, Kisekka I,  et al. Critical
                   doi: 10.1021/es0100219                               knowledge  gaps and research  priorities  in global  soil
                12.  Kabata-Pendias A. Trace Elements in Soils and Plants.   salinity. Adv Agron. 2021;169:1-191.
                   Boca Ratón, Florida: CRC Press; 2010.                doi: 10.1016/bs.agron.2021.03.001
                13.  Kiesken L. Zinc Heavy Metals in Soils. London: Blackie   27.  Reay PF,  Waugh C. Mineral-element  composition
                   Academic and Professional; 1995. p. 284-305.         of  Lupinus albus and  Lupinus angustifolius  in
                14.  Chaney RL. Plant uptake of inorganic waste constituents.   relation  to manganese  accumulation.  Plant  Soil.
                   In: Land Treatment of Hazardous Wastes. New Jersey:   1981;60(3):435-444.
                   Noyes Data Corp; 1983. 50-76.                        doi: 10.1007/BF02149639
                15.  Chaney RL. Improving metal  hyperaccumulator  wild   28.  Carpena R, Peñalosa J, Esteban E, et al. Effects of As and
                   plants to develop commercial phytoextraction systems:   Cd on Lupinus albus L. potential use in phytoremediation.
                   Approaches and progress. In:  Phytoremediation  of   In: Phytoremediation of trace elements in contaminated
                   Contaminated Soil and Water. Boca Raton, Florida:    soils and waters (with special emphasis on Zn, Cd, Pb
                   Lewis, CRC Press; 1999. p. 129-158.                  and As). Cost Action 837 WG2 Workshop 2001. p. 55-57.
                16.  McGrath S, Dunham S, Correll  R. Potential  for   29.  Vera R, Millán R, Schmid T, Tallos A, Recreo F. Behaviour
                   phytoextraction of zinc and cadmium from soils using   of mercury in the soil-plant system.  Application to
                   hyperaccumulator  plants. In:  Phyoremediation  of   phytoremediation  studies. In:  Sustainable use and
                   Contaminated Soil and Water. New York: Lewis; 2000.   Management of Soils in  Arid and Semi  Arid Regions.
                   p. 129-158.                                          Vol. 2. Cartegena, Spain: Quaderna; 2002. p. 482-483.
                17.  Salt DE, Smith RD, Raski I. Phytoremediation.  Annu   30.  Ximénez-Embún  P, Madrid-Albarrán  Y, Cámara  C,
                   Rev Plant Physiol Plant Mol Biol. 1998;49(1):643-668.  Cuadrado C, Burbano C, Múzquiz M. Evaluation  of
                   doi: 10.1146/annurev.arplant.49.1.643                Lupinus species to accumulate heavy metals from waste
                18.  Zhao FJ, Lombi E, McGrath SP. Assessing the potential   waters. Int J Phytoremediation. 2001;3(4):369-379.
                   for zinc and cadmium phytoremediation  with the      doi: 10.1080/15226510108500065
                   hyperaccumulator  Thlaspi caerulescens.  Plant Soil.   31.  Zornoza P, Vázquez S, Esteban E, Fernández-Pascual M,
                   2003;249(1):37-43.                                   Carpena R. Cadmium-stress in nodulated white lupin:
                   doi: 10.1023/A:1022530217289                         Strategies to avoid toxicity. Plant Physiol Biochem.
                19.  Long  X, Yang  X, Ni W. Advance  and  perspectives  in   2002;40(12):1003-1009.
                   technologies  for remediation  of heavy  metal  polluted      doi: 10.1016/S0981-9428(02)01464-X
                   soils. Ying Yong Sheng Tai Xue Bao. 2002;13:757-762.  32.  Pastor J, Hernández AJ, Prieto N, Fernández-Pascual M.
                20.  Oubohssaine M, Dahmani  I. Phytoremediation:       Accumulating behaviour of Lupinus albus L. Growing
                   Harnessing plant power and innovative technologies for   in a normal and a decalcified calcic luvisol polluted with
                   effective soil remediation. Plant Stress. 2024;14:100578.  Zn. J Plant Physiol. 2003;160(12):1457-1466.
                   doi: 10.1016/j.stress.2024.100578                    doi: 10.1078/0176-1617-01007
                21.  Mocek-Płóciniak  A,  Mencel  J,  Zakrzewski  W,   33.  Gutiérrez-Ginés MJ,  Hernández  AJ,  Pérez-Leblic  MI,
                   Roszkowski S. Phytoremediation as an effective remedy   Pastor J,  Vangronsveld J. Phytoremediation  of soils
                   for removing trace  elements  from ecosystems.  Plants   co-contaminated  by organic compounds and heavy
                   (Basel). 2023;12(8):1653.                            metals:  Bioassays with  Lupinus luteus  L.  And
                   doi: 10.3390/plants12081653                          associated endophytic bacteria.  J  Environ Manage.



                Volume 22 Issue 6 (2025)                       177                           doi: 10.36922/AJWEP025140101
   178   179   180   181   182   183   184   185   186   187   188