Page 184 - AJWEP-22-6
P. 184
Ehsan, et al.
2014;143:197-207. 45. Yang XE, Long XX, Ye HB, He ZL, Calvert DV,
doi: 10.1016/j.jenvman.2014.04.028 Stoffella PJ. Cadmium tolerance and hyperaccumulation
34. Martínez-Alcala I, Hernández E, Esteban E, Walker DJ, in a new Zn-hyperaccumulating plant species (Sedum
Bernal MP. Responses of Noccaea caerulescens and alfredii Hance). Plant Soil. 2004;259(1-2):181-189.
Lupinus albus in trace elements-contaminated soils. doi: 10.1023/B: PLSO.0000020956.24027.f2
Plant Physiol Biochem. 2013;66:47-55. 46. Baker AJ. Accumulators and excluders strategies
doi: 10.1016/j.plaphy.2013.01.017 in response of plants to heavy metals. J Plant Nutr.
35. Saladin G, Soubrand M, Joussein E, Benjelloun I. 1981;3(1-4):643-654.
Efficiency of metal(loid) phytostabilization by white lupin doi: 10.1080/01904168109362867
(Lupinus albus L.), common vetch (Vicia sativa L.), and 47. De Vos CH, Schat, De Waal MA, Vooijs R, Ernst WH.
buckwheat (Fagopyrum esculentum Moench). Environ Increased resistance to copper‐induced damage of
Sci Pollut Res. 2024:31(43):55822-55835. the root cell plasmalemma in copper tolerant Silene
doi: 10.1007/s11356-024-34911-5 cucubalus. Physiol Plant. 1991;82(4):523-528.
36. SAS Institute. SAS Institute SAS Version 9.1. Cary, NC: doi: 10.1111/j.1399-3054.1991.tb02942.x
SAS Institute; 2000. 48. Brune A, Urbach W, Dietz KJ. Compartmentation
37. Ximénez-Embún P, Rodríguez-Sanz B, Madrid- and transport of zinc in barley primary leaves as basic
Albarrán Y, Cámara C. Uptake of heavy metals mechanisms involved in zinc tolerance. Plant Cell
by lupin plants in artificially contaminated sand: Environ. 1994;17(2):153-162.
Preliminary results. Int J Environ Anal Chem. doi: 10.1111/j.1365-3040.1994.tb00278.x
2002;82(11-12):805-813. 49. Ebbs SD, Kochian LV. Phytoextraction of zinc by oat
doi: 10.1080/0306731021000102275 (Avena sativa), barley (Hordeum vulgare), and Indian
38. Luo ZB, He XJ, Chen L, Tang L, Gao S, Chen F. Effects mustard (Brassica juncea). Environ Sci Technol.
of Zinc on growth and antioxidant responses in Jatropha 1998;32(6):802-806.
curcas seedlings. Int J Agric Biol. 2010;12:119-124. doi: 10.1021/es970698p
39. Prasad KV Saradhi PP, Sharmila P. Concerted action 50. Knight B, Zhao FJ, McGrath SP, Shen ZG. Zinc and
of antioxidant enzymes and curtailed growth under cadmium uptake by the hyperaccumulator Thlaspi
zinc toxicity in Brassica juncea. Environ Exp Bot. caerulescens in contaminated soils and its effects on the
1999;42(1):1-10. concentration and chemical speciation of metals in soil
doi: 10.1016/S0098-8472(99)00013-1 solution. Plant Soil. 1997;197(1):71-78.
40. Barcelo J, Poschenrieder CH, Andreu I, Gunse B. doi: 10.1023/A:1004255323909
Cadmium-induced decrease of water stress resistance 51. Luo Y, Rimmer DL. Zinc-copper interaction affecting
in bush bean plants (Phaseolus vulgaris L. cv. plant growth on a metal-contaminated soil. Environ
Contender) I. Effects of Cd on water potential, relative Pollut. 1995;88(1):79-83.
water content, and cell wall elasticity. J Plant Physiol. doi: 10.1016/0269-7491(95)91050-u
1986;125(1-2):17-25. 52. Saison C, Schwartz C, Morel JL. Hyperaccumulation
doi: 10.1016/S0176-1617(86)80239-5 of metals by Thlaspi caerulescens as affected by root
41. Jara-Peña E, Gómez J, Montoya H, Chanco M, development and Cd-Zn/Ca-Mg interactions. Int J
Mariano M, Cano N. Phytoremediation capacity of five Phytorem. 2004;6:49-61.
high andean species from soils contaminated with heavy doi: 10.1080/16226510490439981
metals. Rev Peru Biol. 2014;21(2):145-154. 53. Shen ZG, Zhao FJ, McGrath SP. Uptake and transport of
42. Ahmed AHM, Latif HH. Phytoremediation of soil zinc in the hyperaccumulator Thlaspi caerulescens and
contaminated with zinc and lead by using Zea mays L. the non-hyperaccumulator Thlaspi ochroleucum. Plant
Bangladesh J Bot. 2015;44(2):293-298. Cell Environ. 1997;20:898-906.
doi: 10.3329/bjb.v44i2.38519 doi: 10.1046/j.1365-3040.1997.d01-134.x
43. Kidd PS Díez J, Martínez C. Tolerance and 54. Marschner H. Mineral Nutrition of Higher Plants. 2 ed.
nd
bioaccumulation of heavy metals in five populations San Diego: Elsevier Science; 1995.
of Cistus ladanifer L. Subsp. Ladanifer. Plant Soil. 55. Lopez-Bellido L, Fuente M. Lupin crop as an alternative
2004;258(1):189-205. source of protein. Adv Agron. 1986;40:239-295.
doi: 10.1023/B: PLSO.0000016550.49264.f3 doi: 10.1016/S0065-2113(08)60284-9
44. Vassilev A, Lidon FC, Ramalho JC, Matos MDC, 56. Ehsan M, Santamaría-Delgado K, Alderete-Chavez A,
Bareiro MG. Shoot cadmium accumulation and De La Cruz-Landero N, Jaén-Contreras D, Molumeli PA.
photosynthetic performance of barley plants Phytostabilization of cadmium contaminated soils
exposed to high cadmium treatments. J Plant Nutr. by Lupinus uncinatus Schldl. Spanish J Agric Res.
2004;27(5):775-795. 2009;7(2):390-397.
doi: 10.1081/PLN-120030613 doi: 10.5424/sjar/2009072-430
Volume 22 Issue 6 (2025) 178 doi: 10.36922/AJWEP025140101

