Page 185 - AJWEP-22-6
P. 185
Zn accumulating behavior of L. uncinatus
57. Ehsan M, Viveros FL, Hernandez V, et al. Zinc and soil and influence on white lupin growth. Chemosphere.
cadmium accumulation by Lupinus uncinatus Schldl. 2005;60(3):365-371.
grown in nutrient solution. Int J Environ Sci Technol. doi: 10.1016/j.chemosphere.2004.11.098
2015;12(1):307-316. 62. Adriano DC. Zinc Trace Elements in Terrestrial
doi: 10.1007/s13762-013-0456-0 Environments. New York: Springer; 2001. p. 219-261.
58. Vázquez S, Esteban E, Carpena RO. Evolution of 63. Haslett B, Reid R, Rengel Z. Zinc mobility in wheat:
arsenate toxicity in nodulated white lupine in a long-term Uptake and distribution of zinc applied to leaves or roots.
culture. J Agric Food Chem. 2008;56(18):8580-8587. Ann Bot. 2001;87(3):379-386.
doi: 10.1021/jf801673c doi: 10.1006/anbo.2000.1349
59. Martínez-Alcalá I, Clemente R, Bernal MP. Metal 64. Herren T, Feller U. Transfer of zinc from xylem
availability and chemical properties in the rhizosphere to phloem in the peduncle of wheat. J Plant Nutr.
of Lupinus albus L. Growing in a high-metal calcareous 1994;17(9):1587-1598.
soil. Water Air Soil Pollut. 2009;201(1-4):283-293. doi: 10.1080/01904169409364831
doi: 10.1007/s11270-008-9944-0 65. Pearson JN, Rengel Z, Jenner CF, Graham RD. Transport
60. Kerley SJ. Changes in root morphology of white of zinc and manganese to developing wheat grains.
lupin (Lupinus albus L.) and its adaptation to soils Physiol Plant. 1995;95(3):449-455.
with heterogeneous alkaline/acid profiles. Plant Soil. doi: 10.1111/j.1399-3054.1995.tb00862.x
2000;218(1-2):197-205. 66. Herren T, Feller U. Effect of locally increased zinc contents
doi: 10.1023/A:1014967720952 on zinc transport from the flag leaf lamina to the maturing
61. Castaldi P, Santona L, Melis P. Heavy metal grains of wheat. J Plant Nutr. 1996;19(2):379-387.
immobilization by chemical amendments in a polluted doi: 10.1080/01904169609365128
Volume 22 Issue 6 (2025) 179 doi: 10.36922/AJWEP025140101

