Page 64 - AJWEP-22-6
P. 64

Bahar, et al.

                   Africa. Renew Sustain Energy Rev. 2022;160:112282.   goes  with  challenge.  Renew  Sustain  Energy  Rev.
                   doi: 10.1016/j.rser.2022.112282                      2010;14:2232-2237.
                17.  Ghasemi A,  Hosseini AS, Marashi  SPH. Wind  energy      doi: 10.1016/j.rser.2009.11.003
                   resource assessment using Weibull parameters and GIS:   30.  International  Renewable  Energy  Agency.  Off-Grid
                   A case study for the province of Yazd. Renew Sustain   Renewable Energy Systems: Status and Methodological
                   Energy Rev. 2013;28:496-504.                         Issues. Abu Dhabi, UAE: IRENA; 2015.
                   doi: 10.1016/j.rser.2013.08.016                  31.  Arreyndip  NA, Joseph E.  Generalized  extreme  value
                18.  Ghaffari M, Alavi A, Dehghan S. Wind energy potential   distribution models for the assessment of seasonal wind
                   assessment in arid regions using GIS-based  Weibull   energy potential  of Debuncha,  Cameroon.  J  Renew
                   analysis: A  case study in central  Iran.  Renew  Energy.   Energy. 2016;2016:9357812.
                   2021;168:1241-1252.                                  doi: 10.1155/2016/9357812
                   doi: 10.1016/j.renene.2021.01.115                32.  Tuncar EA, Sağlam S, Oral B. A review of short-term
                19.  Gupta NK, Kumar S. Statistical modeling of wind speed   wind power generation  forecasting  methods  in  recent
                   and wind power assessment using Weibull and Rayleigh   technological trends. Energy Rep. 2024;12:197-209.
                   models in India. Energy Rep. 2020;6:2431-2441.       doi: 10.1016/j.egyr.2024.06.006
                   doi: 10.1016/j.egyr.2020.08.099                  33.  Jeon J,  Taylor JW. Using conditional  kernel  density
                20.  Kim TH, Lim HC. A comparative study of wind speed   estimation for wind power density forecasting. J Am Stat
                   distributions  using  entropy  and  Weibull  functions.   Assoc. 2012;107(497):66-79.
                   Energies. 2020;13(4):1-18.                           doi: 10.1080/01621459.2011.643745
                   doi: 10.3390/en13040954                          34.  Jurado X, Reiminger N, Vazquez J, Wemmert C. On the
                21.  Nyarko KA, Whale J, Urmee T. Drivers and challenges   minimal wind directions required to assess mean annual
                   of  off-grid  renewable  energy-based  projects  in  West   air pollution concentration based on CFD results. Sustain
                   Africa: A review. Heliyon. 2023;9(5):e16710.         Cities Soc. 2021;71:102920.
                   doi: 10.1016/j.heliyon.2023.e16710                   doi: 10.1016/j.scs.2021.102920
                22.  Nasiri F, Yari M, Ameri M. Wind resource assessment   35.  Mandal  S, Kundu S, Mondal  S. Statistical  modeling
                   and feasibility study in southeastern Iran. Renew Energy.   of wind speed data  using empirical  and theoretical
                   2021;164:869-882.                                    distributions. Renew Energy, 2019;134:983-992.
                   doi: 10.1016/j.renene.2020.08.037                    doi: 10.1016/j.renene.2018.11.056
                23.  Nasiri AA, Yılmaz A, Özdemir E. Assessment of wind   36.  Jeutho MG, Kenmogne F, Yemélé  D. How to use the
                   energy potential using Weibull parameters: A case study   temperature  data  to  find  the  appropriate  site  for  best
                   from Turkey. Energy Sources A. 2023;45(6):1154-1170.  wind speed generation? Applications  on data  obtained
                   doi: 10.1080/15567036.2020.1751015                   from three different cities of Cameroon. Int J Sci Eng
                24.  Medjo Nouadje BA, Kelly E, Djiela  RHT, Kapen PT,   Sci. 2018;2(4):53-62.
                   Tchuen G,  Tchinda R. Chad’s wind energy potential:   37.  Grace  EA,  Rekha ASP,  Thenaras  M. Automated  solar
                   An assessment of  Weibull  parameters  using thirteen   powered pumping systems for irrigation. Int J Pure Appl
                   numerical methods for a sustainable development. Int J   Math. 2017;114(7):507-516.
                   Ambient Energy. 2023;45(1):2276119.              38.  Mostafaeipour A, Jadidi M, Mohammadi K, Sedaghat A.
                   doi: 10.1080/01430750.2023.2276119                   An analysis of wind energy potential  and economic
                25.  Aslam M, Raza  SAR, Khan  TH.  Wind energy         evaluation in Zahedan, Iran. Renew Sustain Energy Rev.
                   assessment  for remote  areas  in  Pakistan.  Energy   2014;30:641-650.
                   Rep. 2020;6:1547-1558.                               doi: 10.1016/j.rser.2013.11.016
                   doi: 10.1016/j.egyr.2020.02.017                  39.  Ali  RA, Nediguina  MK, Gouajio  M,  et  al.  Effects
                26.  Gökçek M, Bayülgen  M. A  feasibility  study for wind   of adding the antiparallel  diodes in a model of solar
                   energy in Kirklareli, Turkey. Renew Sustain Energy Rev.   photovoltaic cell: Theory and PSpice simulations. J Mod
                   2007;11(9):2183-2190.                                Green Energy. 2024;3:4.
                   doi: 10.1016/j.rser.2006.04.012                      doi: 10.53964/jmge.2024004
                27.  Petkovic D, Ilic D, Milinkovic M. Comparison of wind   40.  Jeutho MG,  Kenmogne F,  Yemélé  D. Statistical
                   speed models  for low wind resource  sites.  Energy.   estimation  of mean  wind energy available  in  western
                   2020;210:118572.                                     region of Cameroon: Case of the Bafoussam’s city.
                   doi: 10.1016/j.energy.2020.118572                    J Harmoniz Res Eng. 2017;5(1):15-27.
                28.  Saidur R, Rahim NA, Islam MR, Solangi KH. A review   41.  Manwell JF, McGowan  JG, Rogers AL.  Wind Energy
                   on global  wind energy policy.  Renew  Sustain Energy   Explained:  Theory, Design and  Application. 2 ed.
                                                                                                                 nd
                   Rev. 2010;14:1744-1762.                              Chichester, UK: Wiley; 2009.
                   doi: 10.1016/j.rser.2010.03.008                  42.  Ouedraogo NS.  Modeling sustainable long-term
                29.  Yu X, Qu H.  Wind power in China-opportunity       electricity  supply-demand  in  Africa.  Appl  Energy.



                Volume 22 Issue 6 (2025)                        58                           doi: 10.36922/AJWEP025070039
   59   60   61   62   63   64   65   66   67   68   69