Page 92 - AJWEP-v22i2
P. 92
Ghosh and Prakasam
Arias-Hidalgo M, Domínguez-Granda L, Apolo-Masache doi: 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
B, Carrión-Mero P. Flood models: An exploratory 33. Chetia L, Paul SK. Spatial assessment of flood
analysis and research trends. Water. 2022;14(16):2488. susceptibility in Assam, India: A comparative study of
doi: 10.3390/w14162488 frequency ratio and shannon’s entropy models. J Indian
20. Das P, Dey NB. Socio-economic vulnerability in a flood Soc Remote Sens. 2024;52(2):343-358.
affected village of Barak valley, Assam, India. Asia Pac doi: 10.1007/s12524-023-01798-7
J Soc Sci. 2011;3:110-123. 34. Abdo HG. Evolving a total-evaluation map of
21. Assam Flood Handbook. Flood Memorandum to the flash flood hazard for hydro-prioritization based on
Ministry of Home Affairs Government of India on Assam geohydromorphometric parameters and GIS–RS manner
Floods – 2022. Government of Assam; 2022. in Al-Hussain river basin, Tartous, Syria. Nat Hazards.
22. Statistical Handbook of Assam. Statistical Handbook 2020;104:681-703.
Assam 2021. Directorate of Economics and Statistics doi: 10.1007/s11069-020-04186-3
Government of Assam, Guwahati; 2021. 35. Pourali SH, Arrowsmith C, Chrisman N, Matkan AA,
23. Islam S, Tahir M, Parveen S. GIS-based flood Mitchell D. Topography wetness index application in
susceptibility mapping of the lower Bagmati basin in flood-risk-based land use planning. Appl Spat Anal
Bihar, using Shannon’s entropy model. Model Earth Syst Policy. 2014;9(1):39-54.}
Environ. 2022;8:1-15. doi: 10.1007/s12061-014-9130-2
doi: 10.1007/s40808-021-01283-5 36. Wang N, Sun F, Demetris Koutsoyiannis, et al. How can
24. Sarkar D, Saha S, Mondal P. GIS-based frequency ratio changes in the human-flood distance mitigate flood fatalities
and Shannon’s entropy techniques for flood vulnerability and displacements? Geophys Res Lett. 2023;50(20):1-9.
assessment in Patna district, Central Bihar, India. Int J doi: 10.1029/2023gl105064
Environ Sci Technol. 2021;19(9):8911-8932. 37. UNISDR. Terminology on Disaster Risk Reduction
doi: 10.1007/s13762-021-03627-1 (DRR). Geneva, Switzerland: UNISDR; 2009b.
25. Al-Hinai H, Abdalla R. Mapping coastal flood susceptible 38. Giannakidou CH, Diakoulaki D, Memos CD. Implementing
areas using Shannon’s entropy model: The case of a flood vulnerability index in urban coastal areas with
Muscat governorate, Oman. ISPRS Int J GeoInform. industrial activity. Nat Hazards. 2019;97(1):99-120.
2021;10(4):252. doi: 10.1007/s11069-019-03629-w
doi: 10.3390/ijgi10040252 39. Birkmann J. Measuring vulnerability to promote
26. Chowdhury S. Flash flood susceptibility mapping of disaster-resilient societies: Conceptual frameworks
North-East depression of Bangladesh using different and definitions. In: Measuring Vulnerability to Natural
GIS based bivariate statistical models. Watershed Ecol Hazards: Towards Disaster Resilient Societies. Vol. 1.
Environ. 2024;6:26-40. New York: United Nations University Press; 2006. p. 3-7.
doi: 10.1016/j.wsee.2023.12.002 40. Scheuer S, Haase D, Meyer V. Exploring multicriteria
27. Arora A, Pandey M, Siddiqui MA, Hong H, Mishra VN. flood vulnerability by integrating economic, social and
Spatial flood susceptibility prediction in Middle Ganga ecological dimensions of flood risk and coping capacity:
Plain: Comparison of frequency ratio and Shannon’s From a starting point view towards an end point view of
entropy models. Geoc Int. 2019;36(18):2085-2116. vulnerability. Nat Hazards. 2010;58(2):731-751.
doi: 10.1080/10106049.2019.1687594 doi: 10.1007/s11069-010-9666-7
28. Pourghasemi HR, Kariminejad N, Amiri M, et al. Assessing 41. Sharma SV, Sarathi Roy P, Chakravarthi V,
and mapping multi-hazard risk susceptibility using a Srinivasa Rao G. Flood risk assessment using multi-criteria
machine learning technique. Sci Rep. 2020;10(1):3203. analysis: A case study from Kopili River Basin, Assam,
doi: 10.1038/s41598-020-60191-3 India. Geomat Nat Hazards Risk. 2017;9(1):79-93.
29. Pourghasemi HR, Rahmati O. Prediction of the landslide doi: 10.1080/19475705.2017.1408705
susceptibility: Which algorithm, which precision? 42. Bin L, Xu K, Pan H, Zhuang Y, Shen R. Urban flood
CATENA. 2018;162:177-192. risk assessment characterizing the relationship among
doi: 10.1016/j.catena.2017.11.022 hazard, exposure, and vulnerability. Environ Sci Pollut
30. Malik S, Pal SC, Arabameri A, et al. GIS-based statistical Res. 2023;30(36):86463-86477.
model for the prediction of flood hazard susceptibility. doi: 10.1007/s11356-023-28578-7
Environ Dev Sustain. 2021;23(11):16713-16743. 43. Jaiswal R, Donahue J, Reilly MJ. Disaster risk
doi: 10.1007/s10668-021-01377-1 management. In: Ciottone’s Disaster Medicine.
31. Yesilnacar EK. The Application of Computational Netherlands: Elsevier Inc. 2016. p. 167-177.
Intelligence to Landslide Susceptibility Mapping in doi: 10.1016/B978-0-323-28665-7.00028-5
Turkey. Australia: University of Melbourne; 2005. p. 200. 44. Tariq MA, Farooq R, van de Giesen N. A Critical review
32. Horton RE. Erosional development of streams and their of flood risk management and the selection of suitable
drainage basins; hydrophysical approach to quantitative measures. Appl Sci. 2020;10(23):8752.
morphology. Geol Soc Am Bull. 1945;56:275-370. doi: 10.3390/app10238752
Volume 22 Issue 2 (2025) 86 doi: 10.36922/AJWEP025040019