Page 107 - AJWEP-v22i3
P. 107

Advancing molecular property prediction using graph neural networks

                   Environ Sci. 2016;3:80.                              et al. Convolutional Networks on Graphs for Learning
                   doi: 10.3389/fenvs.2015.00080                        Molecular  Fingerprints.  In:  NIPS’15:  Proceedings  of
                2.  Wu Z, Ramsundar B, Feinberg EN, et al. MoleculeNet:   the 29  International Conference on Neural Information
                                                                             th
                   A benchmark for molecular machine learning. Chem Sci.   Processing Systems; 2015.
                   2018;9(2):513-530.                               16.  Scarselli F, Gori M,  Tsoi  AC, Hagenbuchner M,
                   doi: 10.1039/c7sc02664a                              Monfardini G. The graph neural network model. IEEE
                3.  Debnath  AK, Lopez  de Compadre  RL, Debnath  G,    Trans Neural Netw. 2009;20(1):61-80.
                   Shusterman AJ, Hansch C. Structure-activity relationship   17.  Shervashidze  N, Schweitzer  P,  Van  Leeuwen  EJ,
                   of mutagenic  aromatic  and  heteroaromatic  nitro   Mehlhorn K, Borgwardt KM. Weisfeiler-lehman graph
                   compounds. Correlation with molecular orbital energies   kernels. J Mach Learn Res. 2011;12:2539-2561.
                   and hydrophobicity. J Med Chem. 1991;34(2):786-797.  18.  Veličković P, Casanova A, Liò P, Cucurull G, Romero A,
                   doi: 10.1021/jm00106a046                             Bengio Y. Graph Attention Networks. In: 6  International
                                                                                                         th
                4.  Kipf  TN,  Welling  M.  Semi-Supervised  Classification   Conference on Learning Representations, ICLR
                   with Graph Convolutional Networks. In: 5  International   2018 - Conference Track Proceedings; 2018. p. 1-12.
                                                     th
                   Conference on Learning Representations (ICLR); 2017.     doi: 10.1007/978-3-031-01587-8_7
                5.  Xu K, Hu W, Leskovec J, Jegelka S. How Powerful are   19.  Schütt KT,  Arbabzadah F, Chmiela  S, Müller KR,
                   Graph Neural Networks? In:  International  Conference   Tkatchenko  A. Quantum-chemical  insights from deep
                   on Learning Representations; 2018.                   tensor neural networks. Nat Commun. 2017;8(1):13890.
                6.  Ramakrishnan R, Dral PO, Rupp M, Von Lilienfeld OA.      doi: 10.1038/ncomms13890
                   Quantum chemistry structures and properties of 134 kilo   20.  Kang X, Hu B, Perdana MC, Zhao Y, Chen Z. Extreme
                   molecules. Sci Data. 2014;1(1):140022.               learning machine  models for predicting  the n-octanol/
                   doi: 10.1038/sdata.2014.22                           water  partition  coefficient  (K ) data of organic
                                                                                                   ow
                7.  Irwin JJ, Shoichet  BK. ZINC-A free  database  of   compounds. J Environ Chem Eng. 2022;10(6):108552.
                   commercially available compounds for virtual screening.      doi: 10.1016/j.jece.2022.108552
                   J Chem Inf Model. 2005;45:177-182.               21.  Kenney  DH,  Paffenroth  RC, Timko  MT, Teixeira AR.
                   doi: 10.1021/ci049714+                               Dimensionally  reduced machine learning model for
                8.  Zeng XL, Wang HJ, Wang Y. QSPR models of n-octanol/  predicting  single component  octanol-water  partition
                   water  partition  coefficients  and  aqueous  solubility  of   coefficients. J Cheminform. 2023;15(1):9.
                   halogenated  methyl-phenyl ethers by DFT method.      doi: 10.1186/s13321-022-00660-1
                   Chemosphere. 2012;86(6):619-625.                 22.  Yokogawa D, Suda K.  Interpretable Attribution
                   doi: 10.1016/j.chemosphere.2011.10.051               Assignment  for  Octanol-Water  Partition  Coefficient.
                9.  Wu Z, Ramsundar B, Feinberg EN, et al. MoleculeNet:   [Chemrxiv Preprint]; 2023.
                   A benchmark for molecular machine learning. Chem Sci.      doi: 10.26434/chemrxiv-2023-2lwsh-v2
                   2018;9(2):513-530.                               23.  Zamora WJ, Viayna A, Pinheiro S, et al. Prediction of
                   doi: 10.1039/C7SC02664A                              toluene/water partition coefficients in the SAMPL9 blind
                10.  Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE.   challenge:  Assessment of machine learning and IEF-
                   Neural  Message Passing for Quantum  Chemistry. In:   PCM/MST continuum  solvation models.  Phys Chem
                   Proceedings  of the 34   International  Conference  on   Chem Physics. 2023;25(27):17952-17965.
                                       th
                   Machine Learning; 2017.                              doi: 10.1039/D3CP01428B
                11.  Amjath M, Henna S, Rathnayake U. Graph representation   24.  Ma W, Wang M, Jiang R, Chen W. A machine learning
                   federated learning for malware detection in Internet of   based  approach  for  estimating  site-specific  partition
                   health things. Results Eng. 2025;25:103651.          coefficient  Kd  of  organic  compounds:  Application  to
                   doi: 10.1016/j.rineng.2024.103651                    nonionic pesticides. Environ Pollut. 2023;323:121297.
                12.  Ellis  LM, Mobley PE. Machine learning  approaches      doi: 10.1016/j.envpol.2023.121297
                   for  predicting  partition  coefficients:  A  comparison  of   25.  Zhu Q, Jia Q, Liu Z, et al. Molecular partition coefficient
                   deep learning and classical methods. J Chem Inf Model.   from machine  learning  with polarization  and entropy
                   2021;61(9):4451-4464.                                embedded atom-centered  symmetry functions.  Phys
                13.  Nevolianis T, Rittig JG, Mitsos A, Leonhard K. Multi-  Chem Chem Phys. 2022;24(38):23082-23088.
                   fidelity Graph Neural Networks for Predicting Toluene/     doi: 10.1039/D2CP02648A
                   Water Partition Coefficients [Chemrxiv Preprint]; 2024.  26.  Ebert RU, Kühne R, Schüürmann G. Octanol/air partition
                   doi: 10.26434/chemrxiv-2024-3t818                    coefficient-a general-purpose fragment model to predict
                14.  Sudhakar M, Jai  A. Explainable  AI for molecular   log K  from molecular structure. Environ Sci Technol.
                                                                            oa
                   property prediction: Enhancing interpretability of deep   2023;57(2):976-984.
                   learning models. ACS Omega. 2022;7(4):2931-2942.     doi: 10.1021/acs.est.2c06170
                15.  Duvenaud D, Maclaurin  D,  Aguilera-Iparraguirre  J,   27.  Stojanova M, Barré P, Clivot H,  et al.  A  New



                Volume 22 Issue 3 (2025)                       101                           doi: 10.36922/AJWEP025070041
   102   103   104   105   106   107   108   109   110   111   112