Page 63 - AN-2-4
P. 63
Advanced Neurology Genomic insights into Alzheimer
disease. Biomed Res Int, 2014: 291862. ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum [Last
accessed on 2022 Dec 30].
16. Wu L, Rosa-Neto P, Hsiung GYR, et al., 2014, Early-onset
familial Alzheimer’s disease (EOFAD). Can J Neurol Sci, 29. Bowie JU, Lüthy R, Eisenberg D, 1991, A method to identify
39: 436–445. protein sequences that fold into a known three-dimensional
structure. Science, 253: 164–170.
https://doi.org/10.1017/s0317167100013949
https://doi.org/10.1126/science.1853201
17. Kutoku Y, Ohsawa Y, Kuwano R, et al., 2015, A second
pedigree with amyloid-less familial Alzheimer’s disease 30. Lüthy R, Bowie JU, Eisenberg D, 1992, Assessment of protein
harboring an identical mutation in the amyloid precursor models with three-dimensional profiles. Nature, 356: 83–85.
protein gene (E693delta). Intern Med, 54: 205–208. https://doi.org/10.1038/356083a0
https://doi.org/10.2169/internalmedicine.54.3021 31. Colovos C, Yeates TO, 1993, Verification of protein
18. Tomiyama T, Shimada H, 2020, APP Osaka mutation in structures: Patterns of nonbonded atomic interactions.
familial Alzheimer’s disease-its discovery, phenotypes, and Protein Sci, 2: 1511–1519.
mechanism of recessive inheritance. Int J Mol Sci, 21: 1413. https://doi.org/10.1002/pro.5560020916
https://doi.org/10.3390/ijms21041413 32. Sippl MJ, 1993, Recognition of errors in three-dimensional
19. Kowalska A, 2004, Genetic counseling and testing for structures of proteins. (ProSA). Proteins, 17: 355–362.
families with Alzheimer’s disease. Neurol Neurochir Pol, https://doi.org/10.1002/prot.340170404
6: 495–501.
33. Wiederstein M, Sippl MJ, 2007, ProSA-web: Interactive web
20. UniProt Consortium, 2021, Uniprot: The universal protein service for the recognition of errors in three-dimensional
knowledgebase in 2021. Nucleic Acids Res, 49: D480–D489. structures of proteins. Nucleic Acids Res, 35: 407–410.
https://doi.org/10.1093/nar/gkaa1100 34. DeLano WL, 2002, Pymol: An open-source molecular
21. Mutations: APP, 1996-2022, 2022. Available from: https:// graphics tool. CCP4 Newsl Protein Crystallogr, 40: 82–92.
www.alzforum.org/mutations/app [Last accessed on 2023 35. Nielsen M, Lundegaard C, Worning P, et al., 2003, Reliable
Mar 30]. prediction of T-cell epitopes using neural networks with
22. Duvaud S, Gabella C, Lisacek F, et al., 2005, Protein novel sequence representations. Protein Sci, 12: 1007–1017.
identification and analysis tools on the expasy server. In: https://doi.org/10.1110/ps.0239403
Walker JM, (ed). The Proteomics Protocols Handbook.
United States: Humana Press, p571–607. 36. Ponomarenko J, Bui H, Li W, et al., 2008. Ellipro: A new
structure-based tool for the prediction of antibody epitopes.
23. Roy A, Kucukural A, Zhang Y, 2010, I-TASSER: A unified BMC Bioinformatics, 9: 514.
platform for automated protein structure and function
prediction. Nat Protoc, 5: 725–738. https://doi.org/10.1186/1471-2105-9-514
37. Vita R, Mahajan S, Overton J, et al., 2018, The immune
https://doi.org/10.1038/nprot.2010.5
epitope database (IEDB): 2018 update. Nucleic Acids Res, 47:
24. Yang J, Yan R, Roy A, et al., 2015, The I-TASSER suite: Protein D339–D343.
structure and function prediction. Nat Methods, 12: 7–8.
https://doi.org/10.1093/nar/gky1006
https://doi.org/10.1038/nmeth.3213
38. Jespersen MC, Peters B, Nielsen M, et al., 2017, Bepipred-2.0:
25. Zhang Y, 2008, I-TASSER server for protein 3D structure Improving sequence-based B-cell epitope prediction using
prediction. BMC Bioinformtics, 9: 40. conformational epitopes. Nucleic Acids Res, 45: W24–W29.
https://doi.org/10.1186/1471-2105-9-40 https://doi.org/10.1093/nar/gkx346
26. Heo L, Park H, Seok C, 2013, Galaxyrefine: Protein structure 39. Gupta S, Kapoor P, Chaudhary K, et al., 2013, In silico
refinement driven by side-chain repacking. Nucleic Acids approach for predicting toxicity of peptides and proteins.
Res, 41: W384–W388. PLoS One, 8: e73957.
https://doi.org/10.1093/nar/gkt458 https://doi.org/10.1371/journal.pone.0073957
27. Lee GR, Heo L, Seok C, 2016, Effective protein model 40. Gupta S, Kapoor P, Chaudhary K, et al., 2015, Peptide
structure refinement by loop modeling and overall toxicity prediction. Methods Mol Biol, 1268: 143–157.
relaxation. Proteins, 84: 294–301.
https://doi.org/10.1007/978-1-4939-2285-7_7
https://doi.org/10.1002/prot.24858
41. Lanoiselée HM, Nicolas G, Wallon D, et al., 2017, APP,
28. Laskowski R, Chistyakov V, 2013, PDBsum. European PSEN1, and PSEN2 mutations in early-onset Alzheimer
Bioinformatics Institute. Available from: https://www. disease: A genetic screening study of familial and sporadic
Volume 2 Issue 4 (2023) 18 https://doi.org/10.36922/an.1734

