Page 63 - AN-2-4
P. 63

Advanced Neurology                                                         Genomic insights into Alzheimer



               disease. Biomed Res Int, 2014: 291862.             ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum  [Last
                                                                  accessed on 2022 Dec 30].
            16.  Wu L, Rosa-Neto P, Hsiung GYR, et al., 2014, Early-onset
               familial  Alzheimer’s  disease  (EOFAD).  Can  J  Neurol  Sci,   29.  Bowie JU, Lüthy R, Eisenberg D, 1991, A method to identify
               39: 436–445.                                       protein sequences that fold into a known three-dimensional
                                                                  structure. Science, 253: 164–170.
               https://doi.org/10.1017/s0317167100013949
                                                                  https://doi.org/10.1126/science.1853201
            17.  Kutoku Y, Ohsawa Y, Kuwano R,  et al., 2015, A second
               pedigree with amyloid-less familial Alzheimer’s disease   30.  Lüthy R, Bowie JU, Eisenberg D, 1992, Assessment of protein
               harboring an identical mutation in the amyloid precursor   models with three-dimensional profiles. Nature, 356: 83–85.
               protein gene (E693delta). Intern Med, 54: 205–208.     https://doi.org/10.1038/356083a0
               https://doi.org/10.2169/internalmedicine.54.3021  31.  Colovos C, Yeates TO, 1993, Verification of protein
            18.  Tomiyama T, Shimada H, 2020, APP Osaka mutation in   structures: Patterns of nonbonded atomic interactions.
               familial Alzheimer’s disease-its discovery, phenotypes, and   Protein Sci, 2: 1511–1519.
               mechanism of recessive inheritance. Int J Mol Sci, 21: 1413.     https://doi.org/10.1002/pro.5560020916
               https://doi.org/10.3390/ijms21041413            32.  Sippl MJ, 1993, Recognition of errors in three-dimensional
            19.  Kowalska A, 2004, Genetic counseling and testing for   structures of proteins. (ProSA). Proteins, 17: 355–362.
               families  with  Alzheimer’s  disease.  Neurol Neurochir Pol,      https://doi.org/10.1002/prot.340170404
               6: 495–501.
                                                               33.  Wiederstein M, Sippl MJ, 2007, ProSA-web: Interactive web
            20.  UniProt Consortium, 2021, Uniprot: The universal protein   service for the recognition of errors in three-dimensional
               knowledgebase in 2021. Nucleic Acids Res, 49: D480–D489.  structures of proteins. Nucleic Acids Res, 35: 407–410.
               https://doi.org/10.1093/nar/gkaa1100            34.  DeLano WL, 2002, Pymol: An open-source molecular
            21.  Mutations: APP, 1996-2022, 2022. Available from: https://  graphics tool. CCP4 Newsl Protein Crystallogr, 40: 82–92.
               www.alzforum.org/mutations/app [Last  accessed  on 2023   35.  Nielsen M, Lundegaard C, Worning P, et al., 2003, Reliable
               Mar 30].                                           prediction  of  T-cell  epitopes  using  neural  networks  with
            22.  Duvaud  S, Gabella  C, Lisacek F,  et al., 2005,  Protein   novel sequence representations. Protein Sci, 12: 1007–1017.
               identification and analysis tools on the expasy server. In:      https://doi.org/10.1110/ps.0239403
               Walker JM, (ed). The Proteomics Protocols Handbook.
               United States: Humana Press, p571–607.          36.  Ponomarenko J, Bui H, Li W, et al., 2008. Ellipro: A new
                                                                  structure-based tool for the prediction of antibody epitopes.
            23.  Roy A, Kucukural A, Zhang Y, 2010, I-TASSER: A unified   BMC Bioinformatics, 9: 514.
               platform for automated protein structure and function
               prediction. Nat Protoc, 5: 725–738.                https://doi.org/10.1186/1471-2105-9-514
                                                               37.  Vita R, Mahajan S, Overton J,  et al.,  2018, The immune
               https://doi.org/10.1038/nprot.2010.5
                                                                  epitope database (IEDB): 2018 update. Nucleic Acids Res, 47:
            24.  Yang J, Yan R, Roy A, et al., 2015, The I-TASSER suite: Protein   D339–D343.
               structure and function prediction. Nat Methods, 12: 7–8.
                                                                  https://doi.org/10.1093/nar/gky1006
               https://doi.org/10.1038/nmeth.3213
                                                               38.  Jespersen MC, Peters B, Nielsen M, et al., 2017, Bepipred-2.0:
            25.  Zhang Y, 2008, I-TASSER server for protein 3D structure   Improving sequence-based B-cell epitope prediction using
               prediction. BMC Bioinformtics, 9: 40.              conformational epitopes. Nucleic Acids Res, 45: W24–W29.
               https://doi.org/10.1186/1471-2105-9-40             https://doi.org/10.1093/nar/gkx346
            26.  Heo L, Park H, Seok C, 2013, Galaxyrefine: Protein structure   39.  Gupta S, Kapoor P, Chaudhary K,  et al., 2013,  In silico
               refinement driven by side-chain repacking.  Nucleic Acids   approach for predicting toxicity of peptides and proteins.
               Res, 41: W384–W388.                                PLoS One, 8: e73957.
               https://doi.org/10.1093/nar/gkt458                 https://doi.org/10.1371/journal.pone.0073957
            27.  Lee  GR,  Heo  L,  Seok  C,  2016,  Effective  protein  model   40.  Gupta  S, Kapoor P,  Chaudhary K,  et al.,  2015, Peptide
               structure refinement by loop modeling and overall   toxicity prediction. Methods Mol Biol, 1268: 143–157.
               relaxation. Proteins, 84: 294–301.
                                                                  https://doi.org/10.1007/978-1-4939-2285-7_7
               https://doi.org/10.1002/prot.24858
                                                               41.  Lanoiselée HM, Nicolas G, Wallon D,  et al., 2017, APP,
            28.  Laskowski R, Chistyakov V, 2013, PDBsum. European   PSEN1, and PSEN2 mutations in early-onset Alzheimer
               Bioinformatics Institute. Available from: https://www.  disease: A genetic screening study of familial and sporadic


            Volume 2 Issue 4 (2023)                         18                        https://doi.org/10.36922/an.1734
   58   59   60   61   62   63   64   65   66   67   68