Page 70 - BH-2-4
P. 70

Brain & Heart                                             Alzheimer’s disease: Gene and protein network analysis



            3.   DeTure MA, Dickson DW. The neuropathological diagnosis   source software for accessing Gene Ontology information
               of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):32.  and finding significantly enriched Gene Ontology
                                                                  terms associated with a list of genes.  Bioinformatics.
               doi: 10.1186/s13024-019-0333-5
                                                                  2004;20(18):3710-3715.
            4.   Goedert M, Spillantini MG. A  century of Alzheimer’s
               disease. Science. 2006;314(5800):777-781.          doi: 10.1093/bioinformatics/bth456
                                                               16.  Von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork  P,
               doi: 10.1126/science.1132814
                                                                  Snel,  B.  STRING:  A  database  of  predicted  functional
            5.   Jucker M, Walker LC. Alzheimer’s disease: From   associations between proteins.  Nucleic Acids Res.
               immunotherapy   to    immunoprevention.  Cell.     2003;31(1):258-261.
               2023;186(20):4260-4270.
                                                                  doi: 10.1093/nar/gkg034
               doi: 10.1016/j.cell.2023.08.021
                                                               17.  Szklarczyk D, Kirsch R, Koutrouli M,  et al. The STRING
            6.   Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D,   database in 2023: Protein-protein association networks and
               Jones  E.  Alzheimer’s  disease.  Lancet.  2011;377(9770):   functional enrichment analyses for any sequenced genome
               1019-1031.                                         of interest. Nucleic Acids Res. 2023;51(D1):D638-D646.
               doi: 10.1016/S0140-6736(10)61349-9                 doi: 10.1093/nar/gkac1000
            7.   Asher S, Priefer R. Alzheimer’s disease failed clinical trials.   18.  Yan T, Ding F, Zhao Y. Integrated identification of key genes
               Life Sci. 2022;306:120861.                         and pathways in Alzheimer’s disease via comprehensive
               doi: 10.1016/j.lfs.2022.120861                     bioinformatical analyses. Hereditas. 2019;156:25.
            8.   Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s      doi: 10.1186/s41065-019-0101-0
               disease. Lancet. 2021;397(10284):1577-1590.     19.  Fiscon G, Sibilio P, Funari A, Conte F, Paci P. Identification
               doi: 10.1016/S0140-6736(20)32205-4                 of potential repurposable drugs in Alzheimer’s disease
                                                                  exploiting a bioinformatics analysis.  J  Pers Med.
            9.   Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of   2022;12(10):1731.
               Alzheimer’s Disease. Neurotherapeutics. 2022;19(1):173-185.
                                                                  doi: 10.3390/jpm12101731
               doi: 10.1007/s13311-021-01146-y
                                                               20.  Liu  W,  Chen  S,  Rao  X,  Yang  Y,  Chen  X,  Yu  L.  The
            10.  Zhang H, Zhang, Y, Li, Y, et al. Bioinformatics and network   inflammatory gene PYCARD of the entorhinal cortex as an
               pharmacology identify the therapeutic role and potential   early diagnostic target for Alzheimer’s disease. Biomedicines.
               mechanism of melatonin in AD and Rosacea.  Front   2023;11(1):194.
               Immunol. 2021;12:756550.
                                                                  doi: 10.3390/biomedicines11010194
               doi: 10.3389/fimmu.2021.756550
                                                               21.  Shi L, Jones WD, Jensen RV,  et al. The balance of
            11.  Horgusluoglu E, Neff R, Song WM,  et al. Integrative   reproducibility, sensitivity, and specificity of lists of
               metabolomics-genomics approach reveals key metabolic   differentially expressed genes in microarray studies.  BMC
               pathways and regulators of Alzheimer’s disease. Alzheimers   Bioinformatics. 2008;9 Suppl 9:S10.
               Dement. 2022;18(6):1260-1278.
                                                                  doi: 10.1186/1471-2105-9-S9-S10
               doi: 10.1002/alz.12468
                                                               22.  Wei B, Wang L, Du C, Hu G,  et al. Identification of
            12.  Clark NR, Hu KS, Feldmann AS,  et al. The characteristic   differentially expressed genes regulated by transcription
               direction: A geometrical approach to identify differentially   factors in glioblastomas by bioinformatics analysis. Mol Med
               expressed genes. BMC Bioinformatics. 2014;15:79.
                                                                  Rep. 2015;11(4):2548-2554.
               doi: 10.1186/1471-2105-15-79
                                                                  doi: 10.3892/mmr.2014.3094
            13.  Broberg  P. Statistical methods for  ranking  differentially   23.  Yang X, Zhu S, Li L,  et  al. Identification of differentially
               expressed genes. Genome Biol. 2003;4(6):R41.       expressed genes and signaling pathways in ovarian cancer
               doi: 10.1186/gb-2003-4-6-r41                       by  integrated  bioinformatics  analysis.  Onco  Targets  Ther.
                                                                  2018;11:1457-1474.
            14.  Chen S, Chai X, Wu X. Bioinformatical analysis of the key
               differentially expressed genes and associations with immune      doi: 10.2147/OTT.S152238
               cell infiltration in development of endometriosis.  BMC   24.  Fowler DM, Araya CL, Gerard W, Fields S. Enrich: Software
               Genom Data. 2022;23(1):20.
                                                                  for analysis of protein function by enrichment and depletion
               doi: 10.1186/s12863-022-01036-y                    of variants. Bioinformatics. 2011;27(24):3430-3431.
            15.  Boyle EI, Weng S, Gollub J, et al. GO: TermFinder--open      doi: 10.1093/bioinformatics/btr577


            Volume 2 Issue 4 (2024)                         10                               doi: 10.36922/bh.2906
   65   66   67   68   69   70   71   72   73   74   75