Page 71 - BH-2-4
P. 71
Brain & Heart Alzheimer’s disease: Gene and protein network analysis
25. Ding Z, Wei Q, Kihara D. Computing and visualizing gene doi: 10.1155/2021/6329041
function similarity and coherence with NaviGO. Methods 35. Feng L, Wang G, Song Q, et al. Proteomics revealed an
Mol Biol. 2018;1807:113-130.
association between ribosome-associated proteins and
doi: 10.1007/978-1-4939-8561-6_9 amyloid beta deposition in Alzheimer’s disease. Metab Brain
Dis. 2024;39(2):263-282.
26. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY.
cytoHubba: Identifying hub objects and sub-networks from doi: 10.1007/s11011-023-01330-3
complex interactome. BMC Syst Biol. 2014;8 Suppl 4:S11.
36. Wang W, Nag S, Zhang X, et al. Ribosomal proteins and
doi: 10.1186/1752-0509-8-S4-S11 human diseases: Pathogenesis, molecular mechanisms, and
therapeutic implications. Med Res Rev. 2015;35(2):225-285.
27. Chang L, Zhou G, Soufan O, Xia J. miRNet 2.0: Network-based
visual analytics for miRNA functional analysis and systems doi: 10.1002/med.21327
biology. Nucleic Acids Res. 2020;48(W1):W244-W251.
37. Wilson DN, Cate JH. The structure and function of the
doi: 10.1093/nar/gkaa467 eukaryotic ribosome. Cold Spring Harb Perspect Biol.
2012;4(5):a011536.
28. Zhang J, Lou W. A Key mRNA-miRNA-lncRNA competing
endogenous RNA triple sub-network linked to diagnosis doi: 10.1101/cshperspect.a011536
and prognosis of hepatocellular carcinoma. Front Oncol. 38. Pelekoudas-Oikonomou F, Zachos G, Papaioannou M,
2020;10:340.
et al. Blockchain-based security mechanisms for IoMT edge
doi: 10.3389/fonc.2020.00340 networks in IoMT-based healthcare monitoring systems.
Sensors (Basel). 2022;22(7):2449.
29. Feng X, Bai Z, Wang J, et al. Robust gene dysregulation
in Alzheimer’s disease brains. J Alzheimers Dis., doi: 10.3390/s22072449
2014;41(2):587-597.
39. Ito S, Yagi R, Ogata S, et al. Proteomic alterations in the brain
doi: 10.3233/JAD-140147 and blood-brain barrier during brain Aβ accumulation in an
APP knock-in mouse model of Alzheimer’s disease. Fluids
30. Kakati T, Bhattacharyya DK, Barah P, Kalita JK. Comparison
of methods for differential co-expression analysis for disease Barriers CNS. 2023;20(1):66.
biomarker prediction. Comput Biol Med. 2019;113:103380. doi: 10.1186/s12987-023-00466-9
doi: 10.1016/j.compbiomed.2019.103380 40. Suzuki M, Tezuka K, Handa T, et al. Upregulation of ribosome
complexes at the blood-brain barrier in Alzheimer’s disease
31. Asgari N, Akbari MT, Zare S, Babamohammadi G. Positive
association of apolipoprotein E4 polymorphism with patients. J Cereb Blood Flow Metab. 2022;42(11):2134-2150.
recurrent pregnancy loss in Iranian patients. J Assist Reprod doi: 10.1177/0271678X221111602
Genet. 2013;30(2):265-268.
41. Luo S, Tamada A, Saikawa Y, Wang Y, Yu Q, Hisatsune T.
doi: 10.1007/s10815-012-9897-5 P2Y1R silencing in astrocytes protected neuroinflammation
and cognitive decline in a mouse model of Alzheimer’s
32. Cha DJ, Mengel D, Mustapic M, et al. miR-212 and miR-132
are downregulated in neurally derived plasma exosomes of disease. Aging Dis. 2024;15(4):1969-1988.
Alzheimer’s patients. Front Neurosci. 2019;13:1208. doi: 10.14336/AD.2023.1006
doi: 10.3389/fnins.2019.01208 42. Sowell RA, Owen JB, Butterfield DA. Proteomics in animal
models of Alzheimer’s and Parkinson’s diseases. Ageing Res
33. Hernández-Ortega K, Garcia-Esparcia P, Gil L, Lucas JJ,
Ferrer I. Altered machinery of protein synthesis in Rev. 2009;8(1):1-17.
Alzheimer’s: From the nucleolus to the ribosome. Brain doi: 10.1016/j.arr.2008.07.003
Pathol. 2016;26(5):593-605.
43. Zhou X, Huang K, Wang Y, et al. Evaluation of therapeutic
doi: 10.1111/bpa.12335 effects of tetramethylpyrazine nitrone in Alzheimer’s disease
mouse model and proteomics analysis. Front Pharmacol.
34. Gui H, Gong Q, Jiang J, Liu M, Li H. Identification of the
Hub genes in Alzheimer’s disease. Comput Math Methods 2023;14:1082602.
Med. 2021;2021:6329041. doi: 10.3389/fphar.2023.1082602
Volume 2 Issue 4 (2024) 11 doi: 10.36922/bh.2906

