Page 290 - EJMO-9-2
P. 290

Eurasian Journal of
            Medicine and Oncology                                          QGJSF multi-target mechanisms in osteoporosis



               skeletal development and  bone  homeostasis  by regulating      doi: 10.1038/s41419-020-2238-1
               osteogenesis. Nat Commun. 2021;12(1):6891.
                                                               35.  Zauli G, Rimondi E, Corallini F, Fadda R, Capitani S,
               doi: 10.1038/s41467-021-27273-w                    Secchiero P. MDM2 antagonist nutlin-3 suppresses the
                                                                  proliferation and differentiation of human pre-osteoclasts
            25.  Joung YH, Darvin P, Kang DY, et al. Methylsulfonylmethane
               Inhibits RANKL-induced osteoclastogenesis in BMMs   through a p53-dependent pathway.  J  Bone Miner Res.
               by suppressing NF-κB and STAT3 activities.  PLoS One.   2007;22(10):1621-1630.
               2016;11(7):e0159891.                               doi: 10.1359/jbmr.070618
               doi: 10.1371/journal.pone.0159891               36.  Tong X, Gu J, Chen M,  et al. P53 positively regulates
            26.  Zhang B, Qu Z, Hui H,  et al. Exploring the therapeutic   osteoprotegerin-mediated  inhibition  of  osteoclastogenesis
               potential of isoorientin in the treatment of osteoporosis:   by downregulating TSC2-induced autophagy  in vitro.
               A  study using network pharmacology and experimental   Differentiation. 2020;114:58-66.
               validation. Mol Med. 2024;30(1):27.                doi: 10.1016/j.diff.2020.06.002
               doi: 10.1186/s10020-024-00799-7                 37.  Qu L, Zhao M, Wang D, Song L, Zhou K. Research progress
            27.  Chen X, Chen W, Aung ZM, Han W, Zhang Y, Chai G.   and mechanism of estrogen receptor α in postmenopausal
               LY3023414 inhibits both osteogenesis and osteoclastogenesis   osteoporosis. Chin J Osteoporos. 2024;30(7):1021-1027.
               through the PI3K/Akt/GSK3 signalling pathway. Bone Joint   38.  Feng C, Xu Z, Tang X, Cao H, Zhang G, Tan J. Estrogen-
               Res. 2021;10(4):237-249.                           related receptor  α: A  significant regulator and promising
               doi: 10.1302/2046-3758.104.BJR-2020-0255.R2        target in bone homeostasis and bone metastasis. Molecules.
                                                                  2022;27(13):3976.
            28.  Kawamura N, Kugimiya F, Oshima Y,  et al. Akt1 in
               osteoblasts and osteoclasts controls bone remodeling. PLoS      doi: 10.3390/molecules27133976
               One. 2007;2(10):e1058.                          39.  Moon YJ, Zhang Z, Bang IH, et al. Sirtuin 6 in preosteoclasts
               doi: 10.1371/journal.pone.0001058                  suppresses age-  and estrogen deficiency-related bone
                                                                  loss  by  stabilizing  estrogen  receptor  α.  Cell Death Differ.
            29.  Vaddavalli PL, Schumacher B. The p53 network: Cellular
               and systemic DNA damage responses in cancer and aging.   2019;26(11):2358-2370.
               Trends Genet. 2022;38(6):598-612.                  doi: 10.1038/s41418-019-0306-9
               doi: 10.1016/j.tig.2022.02.010                  40.  Kim SJ, Piao Y, Lee MG, et al. Loss of sirtuin 6 in osteoblast
            30.  Wang B, Wang J. Research progress on MDM2/MDMX   lineage cells activates osteoclasts, resulting in osteopenia.
               heterodimer and MDMX phosphorylation in regulating   Bone. 2020;138:115497.
               p53. Chin Bull Life Sci. 2020;32(5):446-452.       doi: 10.1016/j.bone.2020.115497
               doi: 10.13376/j.cbls/2020056                    41.  Melville KM, Kelly NH, Surita G, et al. Effects of deletion of
            31.  Hojo H, Ohba S, He X, Lai LP, McMahon AP. Sp7/osterix   ERα in osteoblast-lineage cells on bone mass and adaptation
               is restricted to bone-forming vertebrates where it acts   to mechanical loading differ in female and male mice. J Bone
               as a dlx co-factor in osteoblast specification.  Dev Cell.   Miner Res. 2015;30(8):1468-1480.
               2016;37(3):238-253.                                doi: 10.1002/jbmr.2488
               doi: 10.1016/j.devcel.2016.04.002               42.  Yang Y, Feng N, Liang L, et al. Progranulin, a moderator
            32.  Kawane T, Komori H, Liu W, et al. Dlx5 and mef2 regulate   of estrogen/estrogen receptor  α binding, regulates bone
               a novel runx2 enhancer for osteoblast-specific expression.   homeostasis through PERK/p-eIF2 signaling pathway. J Mol
               J Bone Miner Res. 2014;29(9):1960-1969.            Med (Berl). 2022;100(8):1191-1207.
               doi: 10.1002/jbmr.2240                             doi: 10.1007/s00109-022-02233-z
            33.  Zhen YF, Wang GD, Zhu LQ,  et al. P53 dependent   43.  León-Reyes G, Argoty-Pantoja AD, Becerra-Cervera A,
               mitochondrial permeability transition pore opening is   López-Montoya P, Rivera-Paredez B, Velázquez-Cruz R.
               required for dexamethasone-induced death of osteoblasts.   Oxidative-stress-related genes in osteoporosis: A systematic
               J Cell Physiol. 2014;229(10):1475-1483.            review. Antioxidants (Basel). 2023;12(4):915.
               doi: 10.1002/jcp.24589                             doi: 10.3390/antiox12040915
            34.  Zhang F, Peng W, Zhang J, et al. P53 and Parkin co-regulate   44.  Knowles  HJ,  Cleton-Jansen  AM,  Korsching  E,
               mitophagy in bone marrow mesenchymal stem cells to   Athanasou  NA. Hypoxia-inducible factor regulates
               promote the repair of early steroid-induced osteonecrosis of   osteoclast-mediated bone resorption: Role of angiopoietin-
               the femoral head. Cell Death Dis. 2020;11(1):42.   like 4. FASEB J. 2010;24(12):4648-4659.


            Volume 9 Issue 2 (2025)                        282                         doi: 10.36922/EJMO025150103
   285   286   287   288   289   290   291   292   293   294   295