Page 76 - ESAM-1-4
P. 76

Engineering Science in
            Additive Manufacturing                                             EST manipulates structure of Ti-6Al-4V/Cu



               the  microstructure,  wear  resistance,  anti-corrosion  and   treatment for improving mechanical performances of Al–
               antibacterial behavior of laser cladding CoCrW coatings in   Zn–Mg–Cu alloy by edge dislocation increment. Mater Sci
               marine environment. Surf Coat Technol. 2025;502:131966.  Eng A. 2022;854:143805.
               doi: 10.1016/j.surfcoat.2025.131966                doi: 10.1016/j.msea.2022.143805
            19.  Zhou YJ, Li Y, Tan N,  et al. Preparation process and   29.  Jung J, Ju Y, Morita Y, Toku Y. Enhancement of fatigue life
               mechanical properties of laser cladding gradient   of aluminum alloy affected by the density of pulsed electric
               molybdenum coating on copper alloy. Surface Coat Technol.   current. Int J Fatigue. 2017;103:419-425.
               2023;470:129888.                                   doi: 10.1016/j.ijfatigue.2017.06.021
               doi: 10.1016/j.surfcoat.2023.129888             30.  Zhang S, Geng M, Kim MJ, Bae JH, Nam Han H,
            20.  Wu YY, Zhou J, Han GL, et al. In-situ SEM characterization   Hong  ST. Prolonged fatigue life in aluminum clad steel
               of fracture mechanism of TiB/Ti-2Al-6Sn titanium matrix   by electropulsing treatment: Retardation of interface-
               composites after electroshocking treatment.  Rare Metals.   microcrack formation. Int J Fatigue. 2023;167:107376.
               2024;43(6):2805-2818.                              doi: 10.1016/j.ijfatigue.2022.107376
               doi: 10.1007/s12598-023-02614-4                 31.  Ren X, Wang Z, An R. A promising approach to enhance
            21.  Bhowmik A, Tan JL, Yang Y,  et al. Misorientation and   fatigue life of TC11 titanium alloy: Low dislocation density
               dislocation evolution in rapid residual stress relaxation by   and surface grain refinement induced by electropulsing.
               electropulsing. J Mater Sci Technol. 2025;209:292-299.  J Mater Sci Technol. 2025;204:60-70.
               doi: 10.1016/j.jmst.2024.05.031                    doi: 10.1016/j.jmst.2024.03.020
            22.  Chen K, Zhan L, Yu W. Rapidly modifying microstructure   32.  Bo  H,  Duarte  LI,  Zhu  WJ,  et al.  Experimental  study  and
               and mechanical properties of AA7150 Al alloy processed   thermodynamic  assessment  of  the  Cu–Fe–Ti  system.
               with electropulsing treatment.  J  Mater  Sci  Technol.   Calphad. 2013;40:24-33.
               2021;95:172-179.                                   doi: 10.1016/j.calphad.2012.12.001
               doi: 10.1016/j.jmst.2021.03.060                 33.  Donthula H, Vishwanadh B, Alam T, et al. Morphological
            23.  Xie L, Sun H, Wen Y, Hua L, Zhang LC. Electromagnetic   evolution of transformation products and eutectoid
               treatment enhancing performance of metal materials:   transformation(s) in a hyper-eutectoid Ti-12 at% Cu alloy.
               A review. Prog Mater Sci. 2025;153:101488.         Acta Mater. 2019;168:63-75.
               doi: 10.1016/j.pmatsci.2025.101488                 doi: 10.1016/j.actamat.2019.01.044
            24.  Fan W, Chu Q, Yang X, Li W, Zou Y, Hao S. Microstructure   34.  Murray JL. The Cu−Ti (copper-titanium) system. Bull Alloy
               and  mechanical  properties  of  probeless  friction  stir  spot   Phase Diagr. 1983;4(1):81-95.
               welded Al-Li alloy joints via fast electric pulse treatment:      doi: 10.1007/BF02880329
               A comparative study. Mater Charact. 2023;205:113276.
                                                               35.  Li K, Yang J, Yi Y,  et al. Enhanced strength-ductility
               doi: 10.1016/j.matchar.2023.113276                 synergy and mechanisms of heterostructured Ti6Al4V-Cu
            25.  Liu X, Yang Y, Chen H, Li Y, Xu S, Zhang R. Mesoscopic   alloys produced by laser powder bed fusion.  Acta Mater.
               defect healing and fatigue lifetime improvement of 6061-T6   2023;256:119112.
               aluminum alloy by electropulsing treatment. Eng Fail Anal.      doi: 10.1016/j.actamat.2023.119112
               2023;146:107111.
                                                               36.  Yao X, Sun QY, Xiao L, Sun J. Effect of Ti Cu precipitates on
                                                                                                2
               doi: 10.1016/j.engfailanal.2023.107111             mechanical behavior of Ti–2.5Cu alloy subjected to different
            26.  Qian D, Li W, Deng J, Wang F, Wu M. Promoting the   heat treatments. J Alloys Compds. 2009;484(1-2):196-202.
               interface connection of hot-compression bonded stainless      doi: 10.1016/j.jallcom.2009.04.095
               steel via introducing a novel electroshocking treatment.
               J Mater Res Technol. 2022;18:2140-2151.         37.  Jiang Q, Wen Z.  Thermodynamics of Materials. Beijing,
                                                                  China: Higher Education Press; 2011.
               doi: 10.1016/j.jmrt.2022.03.128
                                                               38.  Zhang YJ, Miyamoto G, Shinbo K, Furuhara T. Quantitative
            27.  Bao J, Chen W, Bai J, Xu J, Shan D, Guo B. Local softening   measurements of phase equilibria at migrating α/γ interface
               deformation and phase transformation induced by electric   and dispersion of VC interphase precipitates: Evaluation
               current in electrically-assisted micro-compression of   of driving force for interphase precipitation.  Acta  Mater.
               Ti–6Al–4V alloy. Mater Sci Eng A. 2022;831:142262.  2017;128:166-175.
               doi: 10.1016/j.msea.2021.142262                    doi: 10.1016/j.actamat.2017.02.020
            28.  Wu W, Song Y, Lu J, Yu Y, Hua L. Novel strategy of electroshock   39.  Zhao R, Li L, Nie Z, Ma Z, Guo Q. Effects of pre-heating


            Volume 1 Issue 4 (2025)                         15                         doi: 10.36922/ESAM025430030
   71   72   73   74   75   76   77   78   79   80   81