Page 75 - ESAM-1-4
P. 75

Engineering Science in
            Additive Manufacturing                                             EST manipulates structure of Ti-6Al-4V/Cu



            Writing – review & editing: Yan Wen, Lechun Xie       2022;171:107549.

            Ethics approval and consent to participate            doi: 10.1016/j.triboint.2022.107549
                                                               9.   Hu Z, Huang C, Xie L, Hua L, Yuan Y, Zhang LC.
            Not applicable.                                       Machine  learning  assisted  quality  control  in metal
                                                                  additive  manufacturing:  A  review.  Adv Powder Mater.
            Consent for publication                               2025;4(6):100342.
            Not applicable.                                       doi: 10.1016/j.apmate.2025.100342

            Availability of data                               10.  Liu Q, Chu S, Zhang X,  et al. Laser shock processing of
                                                                  titanium alloys: A  critical review on the microstructure
            The data that support the findings of this study are available   evolution and enhanced engineering performance. J Mater
            from the corresponding author upon reasonable request.  Sci Technol. 2025;209:262-291.
            References                                            doi: 10.1016/j.jmst.2024.04.075
                                                               11.  Tian Y, Shen J, Hu S, Gou J, Cui Y. Effects of cold metal
            1.   He C, Zhou J, Zhou R,  et al. Nanocrystalline copper for   transfer mode on the reaction layer of wire and arc additive-
               direct copper-to-copper bonding with improved cross-  manufactured Ti-6Al-4V/Al-6.25Cu dissimilar alloys.
               interface formation at low thermal budget.  Nat  Commun.   J Mater Sci Technol. 2021;74:35-45.
               2024;15(1):7095.
                                                                  doi: 10.1016/j.jmst.2020.09.014
               doi: 10.1038/s41467-024-51510-7
                                                               12.  Zhou  Y,  Xu  X,  Zhao  Y,  et  al.  Introducing  Zhao  Y,
            2.   Du L, Liu K, Hu D, et al. Microstructural and mechanical   0nanodomains in Ti-6Al-4V: The mechanism of accelerating
               anisotropy  in  pressure-assisted  sintered  copper  α → β transformation kinetics via electropulsing. J Mater Sci
               nanoparticles. Acta Materialia. 2025;287:120772.   Technol. 2023;162:109-117.
               doi: 10.1016/j.actamat.2025.120772                 doi: 10.1016/j.jmst.2023.04.014
            3.   Nordet G, Gorny C, Mayi Y, et al. Absorptivity measurements   13.  Xie S, Huang C, Ding C, et al. Microstructure and tribological
               during laser powder bed fusion of pure copper with a 1 kW   properties of laser melting deposited Tiposited coating on
               cw green laser. Optics Laser Technol. 2022;147:107612.  CuoatiZr substrate. Adv Eng Mater. 2025;27:2500531.
               doi: 10.1016/j.optlastec.2021.107612               doi: 10.1002/adem.202500531
            4.   Liang YZ, Li L, Shen P. Pulsed current-driven wetting of   14.  Nai X, Chen H, Zhao S,  et al. Investigation on the
               3YSZ by liquid Cu and its mechanisms. J Eur Ceram Soc.   microstructure, mechanical and electrical properties
               2022;42(2):552-560.                                of Ti3SiC2/Cu joint obtained by Ti25Zr25Ni25Cu25
               doi: 10.1016/j.jeurceramsoc.2021.10.021            amorphous high entropy alloy and Ag composite filler.
                                                                  Mater Sci Eng A. 2023;877:145190.
            5.   Yang K, Wang Y, Guo M,  et al. Recent development of
               advanced precipitation-strengthened Cu alloys with      doi: 10.1016/j.msea.2023.145190
               high strength and conductivity: A review. Prog Mater Sci.   15.  Liu C, Wang H, Zhou J, et al. Optimising the mechanism
               2023;138:101141.                                   of electroshock treatment on the tensile behaviour of
               doi: 10.1016/j.pmatsci.2023.101141                 the laser melting deposited Ti55531 alloy.  Virtual Phys
                                                                  Prototyp. 2025;20(1):2449174.
            6.   Imran MK, Masood SH, Brandt M, Bhattacharya S,
               Mazumder J. Direct metal deposition (DMD) of H13 tool      doi: 10.1080/17452759.2024.2449174
               steel on copper alloy substrate: Evaluation of mechanical   16.  Li X, Feng Y, Wang X, et al. Microstructures and properties
               properties. Mater Sci Eng A. 2011;528(9):3342-3349.  of  AlCrFeNiMnx  high-entropy  alloy  coatings  fabricated
               doi: 10.1016/j.msea.2010.12.099                    by laser cladding on a copper substrate.  J  Alloys Compd.
                                                                  2022;926:166778.
            7.   Romanov DA, Pochetukha VV, Sosnin KV, et al. Increase
               in properties of copper electrical contacts in formation of      doi: 10.1016/j.jallcom.2022.166778
               composite coatings based on Ni–C–Ag–N system. J Mater   17.  Jia H, Li X, Dong Z, Jia L, Luo H. Microstructure, wear and
               Res Technol. 2022;19:947-966.                      corrosion properties of laser melted CoCrNiFeTix high-
               doi: 10.1016/j.jmrt.2022.05.040                    entropy  alloy  coatings  on  copper  alloys.  J  Alloys Compd.
                                                                  2025;1021:179674.
            8.   Lu S,  Wang L, Zhou J, Liang  J. Microstructure  and
               tribological properties of laser-cladded Co-Ti3SiC2      doi: 10.1016/j.jallcom.2025.179674
               coating with Ni-based interlayer on copper alloy. Tribol Int.   18.  Dong Q, Zheng S, An Y, Pu J. Effect of copper addition on


            Volume 1 Issue 4 (2025)                         14                         doi: 10.36922/ESAM025430030
   70   71   72   73   74   75   76   77   78   79   80