Page 90 - ESAM-1-4
P. 90
Engineering Science in
Additive Manufacturing TwinPrint: Dual-arm robotic bioprinting
14. Liu W, Zhang YS, Heinrich MA, et al. Rapid continuous bioprinting process using ultrashort peptide bioinks. Int J
multimaterial extrusion bioprinting. Adv Mater. Bioprint. 2018;5(1):173.
2017;29(3):1604630.
doi: 10.18063/ijb.v5i1.173
doi: 10.1002/adma.201604630
25. Khan Z, Kahin K, Hauser C. Time-dependent pulsing of
15. Miri AK, Nieto D, Iglesias L, et al. Bioprinting: Microfluidics- microfluidic pumps to enhance 3D bioprinting of peptide
enabled multimaterial maskless stereolithographic bioinks. In: Gray BL, Becker H, editors. Microfluidics,
bioprinting (Adv. Mater. 27/2018). Adv Mater. BioMEMS, and Medical Microsystems XIX. Washington, DC:
2018;30(27):1870201. SPIE; 2021. p. 5.
doi: 10.1002/adma.201870201 doi: 10.1117/12.2578830
16. Pagan E, Stefanek E, Seyfoori A, et al. A handheld bioprinter 26. Li K, Huang W, Guo H, et al. Advancements in robotic arm-
for multi-material printing of complex constructs. based 3D bioprinting for biomedical applications. Life Med.
Biofabrication. 2023;15(3):035012. 2023;2(6):lnad046.
doi: 10.1088/1758-5090/acc42c doi: 10.1093/lifemedi/lnad046
17. Hauser CAE, Deng R, Mishra A, et al. Natural tri- to 27. Xie N, Shi G, Shen Y, et al. Research progress of robot
hexapeptides self-assemble in water to amyloid beta-type technology in in situ 3D bioprinting. Int J Bioprint.
fiber aggregates by unexpected alpha -helical intermediate 2022;8(4):614.
structures. Proc Natl Acad Sci U S A. 2011;108(4):1361-1366. doi: 10.18063/ijb.v8i4.614
doi: 10.1073/pnas.1014796108 28. Prendergast ME, Burdick JA. Recent advances in enabling
18. Mishra A, Loo Y, Deng R, et al. Ultrasmall natural peptides technologies in 3D printing for precision medicine. Adv
self-assemble to strong temperature-resistant helical fibers Mater. 2020;32(13):1902516.
in scaffolds suitable for tissue engineering. Nano Today. doi: 10.1002/adma.201902516
2011;6(3):232-239.
29. Dong H, Hu B, Zhang W, et al. Robotic-assisted automated
doi: 10.1016/j.nantod.2011.05.001 in situ bioprinting. Int J Bioprint. 2022;9(1):629.
19. Rauf S, Susapto HH, Kahin K, et al. Self-assembling tetrameric doi: 10.18063/ijb.v9i1.629
peptides allow in situ 3D bioprinting under physiological
conditions. J Mater Chem B. 2021;9(4):1069-1081. 30. Albert BJ, Wang C, Williams C, Butcher JT. Non-planar
embedded 3D printing for complex hydrogel manufacturing.
doi: 10.1039/d0tb02424d Bioprinting. 2022;28:e00242.
20. Susapto HH, Alhattab D, Abdelrahman S, et al. Ultrashort doi: 10.1016/j.bprint.2022.e00242
peptide bioinks support automated printing of large-scale
constructs assuring long-term survival of printed tissue 31. Wulle F, Gorke O, Schmidt S, et al. Multi-axis 3D printing
constructs. Nano Lett. 2021;21(7):2719-2729. of gelatin methacryloyl hydrogels on a non-planar surface
obtained from magnetic resonance imaging. Addit Manuf.
doi: 10.1021/acs.nanolett.0c04426 2022;50:102566.
21. Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, doi: 10.1016/j.addma.2021.102566
Juncker D, Zhang YS. Emerging technologies in multi-
material bioprinting. Adv Mater. 2021;33(49):2104730. 32. Fortunato GM, Batoni E, Bonatti AF, Vozzi G, De Maria C.
Surface reconstruction and tissue recognition for robotic-
doi: 10.1002/adma.202104730 based in situ bioprinting. Bioprinting. 2022;26:e00195.
22. Loo Y, Lakshmanan A, Ni M, Toh LL, Wang S, Hauser CAE. doi: 10.1016/j.bprint.2022.e00195
Peptide bioink: Self-assembling nanofibrous scaffolds
for three-dimensional organotypic cultures. Nano Lett. 33. Ozbolat IT, Moncal KK, Gudapati H. Evaluation of
2015;15(10):6919-6925. bioprinter technologies. Addit Manuf. 2017;13:179-200.
doi: 10.1021/acs.nanolett.5b02859 doi: 10.1016/j.addma.2016.10.003
23. Kahin K, Khan Z, Albagami M, et al. Development of a 34. Ozbolat IT, Hospodiuk M. Current advances and future
robotic 3D bioprinting and microfluidic pumping system perspectives in extrusion-based bioprinting. Biomaterials.
for tissue and organ engineering. In: Gray BL, Becker H, 2016;76:321-343.
editors. Microfluidics, BioMEMS, and Medical Microsystems doi: 10.1016/j.biomaterials.2015.10.076
XVII. Washington, DC: SPIE; 2019. p. 25.
35. Wong KV, Hernandez A. A review of additive manufacturing.
doi: 10.1117/12.2507237 ISRN Mech Eng. 2012;2012:208760.
24. Khan Z, Kahin K, Rauf S, et al. Optimization of a 3D doi: 10.5402/2012/208760
Volume 1 Issue 4 (2025) 13 doi: 10.36922/ESAM025410025

