Page 90 - ESAM-1-4
P. 90

Engineering Science in
            Additive Manufacturing                                                TwinPrint: Dual-arm robotic bioprinting



            14.  Liu W, Zhang YS, Heinrich MA,  et al. Rapid continuous   bioprinting process using ultrashort peptide bioinks. Int J
               multimaterial  extrusion  bioprinting.  Adv  Mater.   Bioprint. 2018;5(1):173.
               2017;29(3):1604630.
                                                                  doi: 10.18063/ijb.v5i1.173
               doi: 10.1002/adma.201604630
                                                               25.  Khan Z, Kahin K, Hauser C. Time-dependent pulsing of
            15.  Miri AK, Nieto D, Iglesias L, et al. Bioprinting: Microfluidics-  microfluidic pumps to enhance 3D bioprinting of peptide
               enabled  multimaterial  maskless  stereolithographic   bioinks. In: Gray BL, Becker H, editors.  Microfluidics,
               bioprinting  (Adv.  Mater.  27/2018).  Adv  Mater.   BioMEMS, and Medical Microsystems XIX. Washington, DC:
               2018;30(27):1870201.                               SPIE; 2021. p. 5.
               doi: 10.1002/adma.201870201                        doi: 10.1117/12.2578830
            16.  Pagan E, Stefanek E, Seyfoori A, et al. A handheld bioprinter   26.  Li K, Huang W, Guo H, et al. Advancements in robotic arm-
               for  multi-material  printing  of  complex  constructs.   based 3D bioprinting for biomedical applications. Life Med.
               Biofabrication. 2023;15(3):035012.                 2023;2(6):lnad046.
               doi: 10.1088/1758-5090/acc42c                      doi: 10.1093/lifemedi/lnad046
            17.  Hauser CAE, Deng R, Mishra A,  et al. Natural tri-  to   27.  Xie N, Shi G, Shen Y,  et al. Research progress of robot
               hexapeptides self-assemble in water to amyloid beta-type   technology in  in situ 3D bioprinting.  Int J Bioprint.
               fiber aggregates by unexpected alpha  -helical intermediate   2022;8(4):614.
               structures. Proc Natl Acad Sci U S A. 2011;108(4):1361-1366.     doi: 10.18063/ijb.v8i4.614
               doi: 10.1073/pnas.1014796108                    28.  Prendergast ME, Burdick JA. Recent advances in enabling
            18.  Mishra A, Loo Y, Deng R, et al. Ultrasmall natural peptides   technologies in 3D printing for precision medicine.  Adv
               self-assemble to strong temperature-resistant helical fibers   Mater. 2020;32(13):1902516.
               in scaffolds suitable for tissue engineering.  Nano Today.      doi: 10.1002/adma.201902516
               2011;6(3):232-239.
                                                               29.  Dong H, Hu B, Zhang W, et al. Robotic-assisted automated
               doi: 10.1016/j.nantod.2011.05.001                  in situ bioprinting. Int J Bioprint. 2022;9(1):629.
            19.  Rauf S, Susapto HH, Kahin K, et al. Self-assembling tetrameric      doi: 10.18063/ijb.v9i1.629
               peptides allow  in situ 3D bioprinting under physiological
               conditions. J Mater Chem B. 2021;9(4):1069-1081.  30.  Albert BJ, Wang C, Williams C, Butcher JT. Non-planar
                                                                  embedded 3D printing for complex hydrogel manufacturing.
               doi: 10.1039/d0tb02424d                            Bioprinting. 2022;28:e00242.
            20.  Susapto HH, Alhattab D, Abdelrahman S, et al. Ultrashort      doi: 10.1016/j.bprint.2022.e00242
               peptide bioinks support automated printing of large-scale
               constructs assuring long-term survival of printed tissue   31.  Wulle F, Gorke O, Schmidt S, et al. Multi-axis 3D printing
               constructs. Nano Lett. 2021;21(7):2719-2729.       of gelatin methacryloyl hydrogels on a non-planar surface
                                                                  obtained from magnetic resonance imaging. Addit Manuf.
               doi: 10.1021/acs.nanolett.0c04426                  2022;50:102566.
            21.  Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L,      doi: 10.1016/j.addma.2021.102566
               Juncker  D, Zhang YS. Emerging technologies in multi-
               material bioprinting. Adv Mater. 2021;33(49):2104730.  32.  Fortunato GM, Batoni E, Bonatti AF, Vozzi G, De Maria C.
                                                                  Surface reconstruction and tissue recognition for robotic-
               doi: 10.1002/adma.202104730                        based in situ bioprinting. Bioprinting. 2022;26:e00195.

            22.  Loo Y, Lakshmanan A, Ni M, Toh LL, Wang S, Hauser CAE.      doi: 10.1016/j.bprint.2022.e00195
               Peptide bioink: Self-assembling nanofibrous scaffolds
               for three-dimensional organotypic cultures.  Nano Lett.   33.  Ozbolat  IT,  Moncal  KK,  Gudapati  H.  Evaluation  of
               2015;15(10):6919-6925.                             bioprinter technologies. Addit Manuf. 2017;13:179-200.
               doi: 10.1021/acs.nanolett.5b02859                  doi: 10.1016/j.addma.2016.10.003
            23.  Kahin K, Khan Z, Albagami M,  et al. Development of a   34.  Ozbolat IT, Hospodiuk M. Current advances and future
               robotic 3D bioprinting and microfluidic pumping system   perspectives in extrusion-based bioprinting.  Biomaterials.
               for tissue and organ engineering. In: Gray BL, Becker H,   2016;76:321-343.
               editors. Microfluidics, BioMEMS, and Medical Microsystems      doi: 10.1016/j.biomaterials.2015.10.076
               XVII. Washington, DC: SPIE; 2019. p. 25.
                                                               35.  Wong KV, Hernandez A. A review of additive manufacturing.
               doi: 10.1117/12.2507237                            ISRN Mech Eng. 2012;2012:208760.
            24.  Khan Z, Kahin K, Rauf S,  et al. Optimization of a 3D      doi: 10.5402/2012/208760


            Volume 1 Issue 4 (2025)                         13                         doi: 10.36922/ESAM025410025
   85   86   87   88   89   90   91   92   93   94