Page 105 - GPD-1-2
P. 105

Gene & Protein in Disease                                                  Structure and function of USP7



               43(2): e20190338.                                  USP7:  Implications  for  the  regulation  of  the  p53-MDM2
                                                                  pathway. PLoS Biol, 4(2): e27.
               https://doi.org/10.1590/1678-4685-GMB-2019-0338
                                                                  https://doi.org/10.1371/journal.pbio.0040027
            109. Khoronenkova SV, Dianov GL, 2013, USP7S-dependent
               inactivation of Mule regulates DNA damage signalling and   121. Sheng Y, Saridakis V, Sarkari F,  et al., 2006, Molecular
               repair. Nucleic Acids Res, 41(3): 1750–1756.       recognition of p53 and MDM2 by USP7/HAUSP. Nat Struct
               https://doi.org/10.1093/nar/gks1359                Mol Biol, 13(3): 285–291.
            110. Zhu Q, Sharma N, He J, et al., 2015, USP7 deubiquitinase      https://doi.org/10.1038/nsmb1067
               promotes ubiquitin-dependent DNA damage signaling by   122. Cummins JM, Rago C, Kohli M,  et al., 2004, Tumour
               stabilizing RNF168. Cell Cycle, 14(9): 1413–1425.   suppression: Disruption of HAUSP gene stabilizes p53.
                                                                  Nature, 428(6982):1 p following 486.
               https://doi.org/10.1080/15384101.2015.1007785
            111. Ni W, Lin S, Bian S, et al., 2020, USP7 mediates pathological      https://doi.org/10.1038/nature02501
               hepatic de novo lipogenesis through promoting stabilization   123. Ali A, Raja R, Farooqui SR, et al., 2017, USP7 deubiquitinase
               and transcription of ZNF638. Cell Death Dis, 11(10): 843.  controls  HIV-1  production by  stabilizing Tat  protein.
            112. Franqui-Machin R, Hao M, Bai H, et al., 2018, Destabilizing   Biochem J, 474(10): 1653–1668.
               NEK2 overcomes resistance to proteasome inhibition in      https://doi.org/10.1042/BCJ20160304
               multiple myeloma. J Clin Invest, 128(7): 2877–2893.
                                                               124. Gao L, Zhu D, Wang Q, et al., 2021, Proteome analysis of
               https://doi.org/10.1172/JCI98765                   USP7 substrates revealed its role in melanoma through
            113. Kim JM, Yang YS, Park KH,  et al., 2020, A RUNX2   PI3K/Akt/FOXO and AMPK pathways.  Front Oncol,
               stabilization pathway mediates physiologic and pathologic   11: 650165.
               bone formation. Nat Commun, 11(1): 2289.           https://doi.org/10.3389/fonc.2021.650165
               https://doi.org/10.1038/s41467-020-16038-6      125. Yao Y, Zhang Y, Shi M, et al., 2018, Blockade of deubiquitinase
            114. Ma P, Yang X, Kong Q,  et al., 2014, The ubiquitin ligase   USP7  overcomes  bortezomib  resistance  by  suppressing
               RNF220 enhances canonical Wnt signaling through USP7-  NF-κB signaling pathway in multiple myeloma.  J  Leukoc
               mediated deubiquitination of  β-catenin.  Mol Cell Biol,   Biol, 104(6): 1105–1115.
               34(23): 4355–4366.                                 https://doi.org/10.1002/JLB.2A1017-420RR
               https://doi.org/10.1128/MCB.00731-14            126. Cai J, Chen HY, Peng SJ, et al., 2018, USP7-TRIM27 axis
            115. Jang SY, Jang SW, Ko J, 2012, Regulation of ADP-ribosylation   negatively modulates antiviral type I IFN signaling. Faseb J,
               factor 4 expression by small leucine zipper protein and   32(10): 5238–5249.
               involvement in breast cancer cell migration.  Cancer Lett,      https://doi.org/10.1096/fj.201700473RR
               314(2): 185–197.
                                                               127.  Colleran A, Collins PE, O’Carroll C, et al., 2013, Deubiquitination
               https://doi.org/10.1016/j.canlet.2011.09.028       of  NF-κB  by  ubiquitin-specific  protease-7  promotes
            116. Hofseth LJ, Hussain SP, Harris CC, 2004, p53: 25 years after   transcription. Proc Natl Acad Sci U S A, 110(2): 618–623.
               its discovery. Trends Pharmacol Sci, 25(4): 177–181.      https://doi.org/10.1073/pnas.1208446110
               https://doi.org/10.1016/j.tips.2004.02.009      128. Zeng M, Zhang X, Xing W,  et al., 2022, Cigarette smoke
            117. Sabapathy K, Lane DP, 2018, Therapeutic targeting of p53:   extract mediates cell premature senescence in chronic
               All mutants are equal, but some mutants are more equal   obstructive pulmonary disease patients by up-regulating
               than others. Nat Rev Clin Oncol, 15(1): 13–30.     USP7 to activate p300-p53/p21 pathway.  Toxicol Lett,
                                                                  359: 31–45.
               https://doi.org/10.1038/nrclinonc.2017.151
                                                                  https://doi.org/10.1016/j.toxlet.2022.01.017
            118. Kruse JP, Gu W, 2009, Modes of p53 regulation. Cell, 137(4):
               609–622.                                        129.  Duan D, Shang M, Han Y, et al., 2022, EZH2-CCF-cGAS Axis
                                                                  Promotes Breast Cancer Metastasis. Int J Mol Sci, 23(3): 1788.
               https://doi.org/10.1016/j.cell.2009.04.050
                                                                  https://doi.org/10.3390/ijms23031788
            119. Momand J, Zambetti GP, Olson DC, et al., 1992, The mdm-2
               oncogene product forms a complex with the p53 protein and   130.  Qi SM, Cheng G, Cheng XD,  et al., 2020, Targeting USP7-
               inhibits p53-mediated transactivation. Cell, 69(7): 1237–1245.   mediated deubiquitination of MDM2/MDMX-p53 pathway
                                                                  for cancer therapy: Are we there yet? Front Cell Dev Biol, 8: 233.
               https://doi.org/10.1016/0092-8674(92)90644-r
                                                                  https://doi.org/10.3389/fcell.2020.00233
            120. Hu M, Gu L, Li M,  et  al., 2006, Structural basis of
               competitive recognition of p53 and MDM2 by HAUSP/  131. Cheng X, Zhang B, Guo F,  et al., 2022, Deubiquitination


            Volume 1 Issue 2 (2022)                         15                     https://doi.org/10.36922/gpd.v1i2.118
   100   101   102   103   104   105   106   107   108   109   110