Page 82 - GPD-1-2
P. 82

Gene & Protein in Disease                                   Recent advances and challenges of network biology



               elucidate molecular networks that cause disease.  Nature,      https://doi.org/10.1038/s41477-020-0743-y
               452(7186): 429–435.
                                                               152. Bodein  A,  Scott-Boyer  MP0,  Perin  O,  et al.,  2022,
               https://doi.org/10.1038/nature06757                Interpretation of network-based integration from multi-
                                                                  omics longitudinal data. Nucl Acids Res, 50(5): e27.
            142. Valle I, Roweth HG, Malloy MW,  et al., 2021, Network
               medicine framework shows that proximity of polyphenol      https://doi.org/10.1093/nar/gkab1200
               targets and disease proteins predicts therapeutic effects of   153. Taylor KJ, Sims AH, Liang L, et al., 2010, Dynamic changes in
               polyphenols. Nature Food, 2: 143–155.
                                                                  gene expression in vivo predict prognosis of tamoxifen-treated
               https://doi.org/10.1038/s43016-021-00243-7         patients with breast cancer. Breast Cancer Res, 12(3): R39.
            143. Erler JT, Linding R, 2012, Network medicine strikes a blow      https://doi.org/10.1186/bcr2593
               against breast cancer. Cell, 149(4): 731–733.
                                                               154. Alcalá-Corona SA, Sandoval-Motta S, Espinal-Enríquez J,
               https://doi.org/10.1016/j.cell.2012.04.014         et al., 2021, Modularity in biological networks. Front Genet,
                                                                  12: 1708–1708.
            144. Lee MJ, Ye AS, Gardino AK,  et al., 2012, Sequential
               application of anticancer drugs enhances cell death by      https://doi.org/10.3389/fgene.2021.701331
               rewiring apoptotic signaling networks. Cell, 149(4): 780–794.
                                                               155. Mucha PJ, Richardson T, Macon K, et al., 2010, Community
               https://doi.org/10.1016/j.cell.2012.03.031         structure  in  time-dependent,  multiscale,  and  multiplex
            145. Cheng F, Desai RJ, Handy DE, et al., 2018, Network-based   networks. Science, 328(5980): 876–878.
               approach to prediction and population-based validation of   https://doi.10.1126/science.1184819
               in silico drug repurposing. Nat Commun, 9: 2691.
                                                               156. Agostino GD, Scala A, 2014, Networks of Networks: The
               https://doi.org/10.1038/s41467-018-05116-5         Last Frontier of Complexity. Berlin: Springer.
            146. Cheng  F,  István  A,  Barabási  AL,  2019,  Network-based      https://doi.org/10.1007/978-3-319-03518-5
               prediction of drug combinations. Nat Commun, 10: 1197.
                                                               157. Bianconi G, 2018, Multilayer Networks: Structure and
               https://doi.org/10.1038/s41467-019-09186-x         Function. Oxford: Oxford University Press.
            147. Zhou Y, Hou Y, Shen J,  et al., 2020, Network-based drug      https://doi.org/10.1093/oso/9780198753919.001.0001
               repurposing for  novel coronavirus  2019-nCoV/SARS-
               CoV-2. Cell Discov, 6: 14.                      158. Pilosof S, Porter MA, Pascual M, et al., 2017, The multilayer
                                                                  nature of ecological networks. Nat Ecol Evol, 1(4): 0101.
               https://doi.org/10.1038/s41421-020-0153-3
                                                                  https://doi.org/10.1038/s41559-017-0101
            148. Gysi DM, Valle TD, Zitnik M,  et al., 2021, Network
               medicine framework for identifying drug-repurposing   159. Liu XM, Maiorino E, Halu A, et al., 2020, Robustness and
               opportunities for COVID-19.  Proc Natl Acad Sci. U  S A,   lethality in multilayer biological molecular networks.  Nat
               118(19): e2025581118.                              Commun, 11(1): 6043.
                                                                  https://doi.org/10.1038/s41467-020-19841-3
               https://doi.org/10.1073/pnas.2025581118
                                                               160. Shang HX, Liu ZP, 2021, Prioritizing Type 2 diabetes genes
            149. Stumpf MP, Wiuf C, May RM, 2005, Subnets of scale-
               free networks are not scale-free: Sampling properties of   by weighted PageRank on bilayer heterogeneous networks.
               networks. Proc Natl Acad Sci U S A, 102(12): 4221–4224.   IEEE/ACM Trans Comput Biol Bioinform, 18(1): 336–346.
                                                                  https://doi.org/10.1109/TCBB.2019.2917190
               https://doi.org/10.1073/pnas.0501179102
                                                               161. Shang HX, Liu ZP, 2020, Network-based prioritization of
            150. Sathyanarayanan A, Gupta R, Thompson EW, et al., 2020,
               A  comparative  study  of  multi-omics  integration  tools  for   cancer genes by integrative ranks from multi-omics data.
               cancer driver gene identification and tumour subtyping.   Comput Biol Med, 119: 103692.
               Brief Bioinform, 21(6): 1920–1936.                 https://doi.org/10.1016/j.compbiomed.2020.103692
               https://doi.org/10.1093/bib/bbz121              162. Li J, Zhao PX, 2016, Mining functional modules in
                                                                  heterogeneous biological networks using multiplex
            151. Zander M, Lewsey MG, Clark NM, et al., 2020, Publisher
               correction: Integrated multi-omics framework of the plant   PageRank approach. Front Plant Sci, 7: 903.
               response to jasmonic acid. Nat Plants, 6(8): 1065–1065.      https://doi.org/10.3389/fpls.2016.00903









            Volume 1 Issue 2 (2022)                         16                     https://doi.org/10.36922/gpd.v1i2.101
   77   78   79   80   81   82   83   84   85   86   87