Page 81 - GPD-1-2
P. 81

Gene & Protein in Disease                                   Recent advances and challenges of network biology



               Ranking  of  network  elements  based  on functional   130. Vinayagam A, Gibson TE, Lee HJ, et al., 2016, Controllability
               substructures. J Theor Biol, 248(3): 471–479.      analysis of the directed human protein interaction network
                                                                  identifies disease genes and drug targets. Proc Natl Acad Sci
               https://doi.org/10.1016/j.jtbi.2007.05.038
                                                                  U S A, 113(18): 4976–4981.
            118. Rual JF, Venkatesan K, Hao T,  et al., 2005, Towards
               a proteome-scale map of the human protein-protein      https://doi.org/10.1073/pnas.1603992113
               interaction network. Nature, 437(7062): 1173–1178.   131. Yan G, Vertes PE, Towlson EK, et al., 2017, Network control
                                                                  principles predict neuron function in the  Caenorhabditis
               https://doi.org/10.1038/nature04209
                                                                  elegans connectome. Nature, 550(7677): 519–523.
            119. Cui Y, Cai M, Dai Y, et al., 2018, A hybrid network-based      https://doi.org/10.1038/nature24056
               method for the detection of disease-related genes. Physica A,
               492: 389–394.                                   132. Wang P, Wang DJ, Lü JH, 2019, Controllability analysis of a
                                                                  gene network for Arabidopsis thaliana reveals characteristics
               https://doi.org/10.1016/j.physa.2017.10.026
                                                                  of functional gene families. IEEE/ACM Trans Comput Biol
            120. Milo R, Shen-Orr S, Itzkovitz S, et al., 2002, Network motifs:   Bioinform, 16(3): 912–924.
               Simple building blocks of complex networks.  Science,
               298(5594): 824–827.                                https://doi.org/10.1109/TCBB.2018.2821145
                                                               133. Guo WF, Zhang SW, Zeng T, et al., 2020, Network control
               https://doi.org/10.1126/science.298.5594.824
                                                                  principles for identifying personalized driver genes in
            121. Shen-Orr SS, Milo R, Mangan S, et al., 2002, Network motifs   cancer. Brief Bioinform, 21(5): 1641–1662.
               in the transcriptional regulation network of Escherichia coli.
               Nat Genet, 31(1): 64–68.                           https://doi.org/10.1093/bib/bbz089
                                                               134. Zheng W, Wang DJ, Zou XF, 2019, Control of multilayer
               https://doi.org/10.1038/ng881
                                                                  biological networks and applied to target identification of
            122. Louie B, Higdon R, Kolker E, 2009, A statistical model of   complex diseases. BMC Bioinformatics, 20: 271.
               protein sequence similarity and function similarity reveals      https://doi.org/10.1186/s12859-019-2841-2
               overly-specific function predictions. PLoS One, 4(10): e7546.
                                                               135. Subramanian A, Tamayo P, Mootha VK, et al., 2005, Gene
               https://doi.org/10.1371/journal.pone.0007546
                                                                  set enrichment analysis: A knowledge-based approach for
            123. Watson JD, 2011, Molecular Biology of the Gene. London:   interpreting genome-wide expression profiles.  Proc Natl
               Pearson.                                           Acad Sci U S A, 102(43): 15545–15550.
            124. Sharan R, Ulitsky I, Shamir R, 2007, Network-based      https://doi.org/10.1073/pnas.0506580102
               prediction of protein function. Mol Syst Biol, 3: 88.
                                                               136. Subramanian A, Kuehn H, Gould J, et al., 2007, GSEA-P:
               https://doi.org/10.1038/msb4100129                 A  desktop application for gene set enrichment analysis.
                                                                  Bioinformatics, 23(23): 3251–3253.
            125. Klie S, Nikoloski Z, Selbig J, 2014, Biological cluster
               evaluation for gene function prediction.  J  Comput Biol,      https://doi.org/10.1093/bioinformatics/btm369
               21(6): 428–445.
                                                               137. Huang DW, Sherman BT Lempicki RA, 2009, Systematic
               https://doi.org/10.1089/cmb.2009.0129              and integrative analysis of large gene lists using DAVID
                                                                  bioinformatics resources. Nature Pro, 4(1): 44–57.
            126. Liu YY, Slotine JJ, Barabási AL, 2011, Controllability of
               complex networks. Nature, 473(7346): 167–173.      https;//doi.org/10.1038/nprot.2008.211
               https://doi.org/10.1038/nature10011             138. Yu GC, Wang LG, Han YY, et al., 2012, ClusterProfiler: An
                                                                  R package for comparing biological themes among gene
            127. Wuchty S, 2014, Controllability in protein interaction
               networks. Proc Natl Acad Sci U S A, 111(19): 7156–7160.   clusters. OMICS, 16(5): 284–287.
                                                                  https://doi.org/10.1089/omi.2011.0118
               https://doi.org/10.1073/pnas.1311231111
                                                               139. Zheng Q, Wang XJ, 2008, GOEAST: A web-based software
            128. Liu XM, Pan LQ, 2015, Identifying driver nodes in the human
               signaling network using structural controllability analysis.   toolkit for gene ontology enrichment analysis. Nucl Acids
               IEEE/ACM Trans Comput Biol Bioinform, 12(2): 467–472.   Res, 36: 358–363.
                                                                  https://doi.org/10.1093/nar/gkn276
               https://doi.org/10.1109/TCBB.2014.2360396
                                                               140. Pawson T, Linding R, 2008, Network medicine. FEBS Lett,
            129. Zhang XF, Le OY, Zhu Y, et al., 2015, Determining minimum
               set of driver nodes in protein-protein interaction networks.   582(8): 1266–1270.
               BMC Bioinformatics, 16: 146.                       https://doi.org/10.1016/j.febslet.2008.02.011
               https://doi.org/10.1186/s12859-015-0591-3       141. Chen Y, Zhu J, Lum PY,  et al., 2008, Variations in DNA


            Volume 1 Issue 2 (2022)                         15                     https://doi.org/10.36922/gpd.v1i2.101
   76   77   78   79   80   81   82   83   84   85   86