Page 79 - GPD-1-2
P. 79
Gene & Protein in Disease Recent advances and challenges of network biology
Proc Natl Acad Sci U S A, 93(16): 8496–8501. structurally dominant nodes in protein-protein interaction
networks. IEEE Trans Biomed Circuits. Syst, 8(1): 87–97.
https://doi.org/10.1073/pnas.93.16.8496
https://doi.org/10.1109/TBCAS.2014.2303160
71. Yang JS, Garriga-Canut M, Link N, et al., 2018, rec-
YnH enables simultaneous many-by-many detection of 83. Solé RV, Pastor-Satorras R, Smith E, et al., 2002, A model of
direct protein-protein and protein-RNA interactions. Nat large-scale proteome evolution. Adv Complex Syst, 5: 43–54.
Commun, 9(1): 3747.
https://doi.org/10.48550/arXiv.cond-mat/0207311
https://doi.org/10.1038/s41467-018-06128-x.
84. Mei GF, Wu XQ, Wang YF, et al., 2018, Compressive-sensing-
72. Szklarczyk D, Gable AL, Nastou KC, et al., 2021, The STRING based structure identification for multilayer networks. IEEE
database in 2021: Customizable protein-protein networks, Trans Cybern, 48(2): 754–764.
and functional characterization of user-uploaded gene/ https://doi.org/10.1109/TCYB.2017.2655511
measurement sets. Nucl Acids Res, 49(D10: D605–D612.
85. Wang YF, Wu XQ, Lü JH, et al., 2020, Topology identification
https://doi.org/10.1093/nar/gkaa1074
in two-layer complex dynamical networks. IEEE Trans. Netw
73. Peri S, Navarro JD, Amanchy R, et al., 2003, Development Sci Eng, 7(1): 538–548.
of human protein reference database as an initial platform https://doi.org/10.1109/TNSE.2018.2885163
for approaching systems biology in humans. Genome Res,
13(10): 2363–2371. 86. Wu XQ, Zhao XY, Lü JH, et al., 2016, Identifying topologies of
complex dynamical networks with stochastic perturbations.
https://doi.org/10.1101/gr.1680803
IEEE Trans Control Netw, 3(4): 379–389.
74. Vázquez A, Flammini A, Maritan A, et al., 2002, Modeling of https://doi.org/10.1109/TCNS.2015.2482178
protein interaction networks. Complexus, 1(1): 38–44.
87. Zhou J, Yu WW, Li XM, et al., 2009, Identifying the topology
https://doi.org/10.1159/000067642
of a coupled FitzHugh-Nagumo neurobiological network
75. Rutjes T, 2007, Duplication-Divergence and Proteome via a pinning mechanism. IEEE Trans Neural Netw, 20(10):
Evolution Networks. Netherlands: Technische Universiteit 1679–1684.
Eindhoven.
https://doi.org/10.1109/TNN.2009.2029102
76. Ispolatov I, Krapivsky PL, Yuryev A, 2005, Duplication- 88. Liu Q, Ma C, Xiang B, et al., 2021, Inferring network
divergence model of protein interaction network,” Phys Rev structure and estimating dynamical process from Binary-
E, Stat Nonlin Soft Matter Phys, 71(6): 061911.
State data via logistic regression. IEEE Trans Syst Man
https://doi.org/10.1103/PhysRevE.71.061911 Cybern, 51(8): 4639–4649.
77. Pastor-Satorras R, Smith E, Solé RV, 2003, Evolving protein https://doi.org/10.1109/TSMC.2019.2945363
interaction networks through gene duplication. J Theor Biol, 89. Wu RL, Jiang LB, 2021, Recovering dynamic networks in big
222(2): 199–210.
static datasets. Phys Rep, 912: 1–57.
https://doi.org/10.1016/S0022-5193(03)00028-6
https://doi.org/10.1016/j.physrep.2021.01.003
78. Xu CS, Liu ZR, Wang R, 2010, How divergence mechanisms 90. Remondinin D, Nerettic N, Franceschi C, et al., 2007,
influence disassortative mixing property in biology. Physica Networks from gene expression time series: Characterization
A Stat Mech Appl, 389(3): 643–650.
of correlation patterns. Int J Bifur Chaos, 17(7): 2477–2483.
https://doi.org/10.1016/j.physa.2009.09.016
https://doi.org/10.1142/S0218127407018543
79. Wan X, Cai SM, Zhou J, et al., 2010, Emergence of modularity 91. Song L, Langfelder P, Horvath S, 2012, Comparison of
and disassortativity in protein-protein interaction networks. co-expression measures: Mutual information, correlation,
Chaos, 20(4): 045113.
and model based indices. BMC Bioinformat, 13: 328.
https://doi.org/10.1063/1.3517107
https://doi.org/10.1186/1471-2105-13-328
80. Teichmann SA, Babu MM, 2004, Gene regulatory network 92. Hong S, Chen X, Li J, et al., 2013, Canonical correlation
growth by duplication. Nat Genet, 36(5): 492–496.
analysis for RNA-seq co-expression networks. Nucl Acids
https://doi.org/10.1038/ng1340 Res, 41(8): e95.
81. Bhan A, Galas DJ, Dewey TG, 2002, A duplication growth https://doi.org/10.1093/nar/gkt145
model of gene expression networks. Bioinformatics, 93. Skinnider M, Squair J, Foster L, 2019, Evaluating measures
18(11): 1486–1493.
of association for single-cell transcriptomics. Nat Methods,
https://doi.org/10.1093/bioinformatics/18.11.1486 16: 381–386.
82. Wang P, Yu XH, Lü JH, 2014, Identification and evolution of https://doi.org/10.1038/s41592-019-0372-4
Volume 1 Issue 2 (2022) 13 https://doi.org/10.36922/gpd.v1i2.101

