Page 80 - GPD-1-2
P. 80
Gene & Protein in Disease Recent advances and challenges of network biology
94. Liu ZP, 2018, Towards precise reconstruction of gene gene expression data. BMC Bioinformatics, 7: 509.
regulatory networks by data integration. Quant Biol, https://doi.org/10.1186/1471-2105-7-509
6: 113–128.
106. Ha J, Baladandayuthapani V, Do K, 2015, DINGO:
https://doi.org/10.1007/s40484-018-0139-4
Differential network analysis in genomics. Bioinformatics,
95. Zhang X, Zhao X, He K, et al., 2012, Inferring gene regulatory 31(21): 3413–3420.
networks from gene expression data by path consistency https://doi.org/10.1093/bioinformatics/btv406
algorithm based on conditional mutual information.
Bioinformatics, 28(1): 98–104. 107. Wang P, Wang DJ, 2021, Gene differential co-expression
networks based on RNA-seq data, construction and its
https://doi.org/10.1093/bioinformatics/btr626
applications. IEEE/ACM Trans Comput Biol Bioinform.
96. Meyer P, Lafitte F, Bontempi G, 2008, minet: A R/ https://doi.org/10.1109/TCBB.2021.3103280
Bioconductor package for inferring large transcriptional
networks using mutual information. BMC Bioinformatics, 108. Liu XP, Liu ZP, Zhao XM, et al., 2012, Identifying disease
9: 461. genes and module biomarkers by differential interactions.
J Amer Med Inform Assoc, 19(2): 241–248.
https://doi.org/10.1186/1471-2105-9-461
https://doi.org/10.1136/amiajnl-2011-000658
97. Wu XQ, Wang WH, Zheng WX, 2012, Inferring topologies
of complex networks with hidden variables. Phys Rev E, 109. Liu XP, Chang X, Liu R, et al., 2017, Quantifying critical
86(4): 046106. states of complex diseases using single-sample dynamic
network biomarkers. PLoS Comput Biol, 13(7): e1005633.
https://doi.org/10.1103/PhysRevE.86.046106
https://doi.org/10.1371/journal.pcbi.1005633
98. Beyer A, Bandyopadhyay S, Ideker T, 2007, Integrating
physical and genetic maps: From genomes to interaction 110. Tu JJ, Le OY, Yuan Z, et al., 2021, Differential network analysis
networks. Nat Rev Genet, 8(9): 699–710. by simultaneously considering changes in gene interactions
and gene expression. Bioinformatics, 37(23): 4414–4423.
https://doi.org/10.1038/nrg2144
https://doi.org/10.1093/bioinformatics/btab502
99. Ghanbari M, Lasserre J, Vingron M, 2015, Reconstruction
of gene networks using prior knowledge. BMC Syst Biol, 111. Hudson NJ, Reverter A, Dalrymple BP, 2009, A differential
9(1): 84. wiring analysis of expression data correctly identifies the
gene containing the causal mutation. PLoS Comput Biol,
https://doi.org/10.1186/s12918-015-0233-4
5(5): 1000382.
100. Altarawy D, Eid FE, Heath LS, 2017, PEAK: Integrating
curated and noisy prior knowledge in gene regulatory https://doi.org/10.1371/journal.pcbi.1000382
network inference. J Comput Biol, 24(9): 863–873. 112. Tian WD, Zhang LV, Tasan M, et al., 2008, Combining
guilt-by-association and guilt-by-profiling to predict
https://doi.org/10.1089/cmb.2016.0199
Saccharomyces cerevisiae gene function. Genome Biol, 9: S1.
101. Jansen R, Yu H, Greenbaum D, et al., 2003, A bayesian
networks approach for predicting protein-protein https://doi.org/10.1186/gb-2008-9-s1-s7
interactions from genomic data. Science, 302(5644): 449–453. 113. Shin H, Sheu B, Joseph M, et al., 2008, Guilt-by-association
feature selection: Identifying biomarkers from proteomic
https://doi.org/10.1126/science.1087361
profiles. J Biomed Inform, 41(1): 124–136.
102. Xiao N, Zhou A, Kempher M, et al., 2022, Disentangling
direct from indirect relationships in association networks. https://doi.org/10.1016/j.jbi.2007.04.003
Proc Natl Acad Sci U S A, 119(2): e2109995119. 114. Kitsak M, Gallos LK, Havlin S, et al., 2010, Identification
of influential spreaders in complex networks. Nat Phys,
https://doi.org/10.1073/pnas.2109995119
6(11): 888–893.
103. Chowdhury H, Bhattacharyya D, Kalita J, et al., 2019,
(Differential) co-expression analysis of gene expression: https://doi.org/10.1038/NPHYS1746
A survey of best practices,” IEEE/ACM Trans Comput Biol 115. Wang P, 2021, Statistical identification of important nodes in
Bioinform, 17(4): 1154–1173. biological systems. J Syst Sci Complex, 34(4): 1454–1470.
https://doi.org/10.1109/TCBB.2019.2893170 https://doi.org/10.1007/s11424-021-0001-2
104. Tesson B, Breitling R, Jansen R, 2010, DiffCoEx: A simple 116. Lü LY, Zhou T, Zhang QM, et al., 2016, The H-index of a
and sensitive method to find differentially coexpressed gene network node and its relation to degree and coreness. Nat
modules. BMC Bioinformatics, 11: 497. Commun, 7: 10168.
https://doi.org/10.1186/1471-2105-11-497 https://doi.org/10.1038/ncomms10168
105. Watson M, 2006, CoXpress: Differential co-expression in 117. Koschützki D, Schwöbbermeyer H, Schreiber F, 2007,
Volume 1 Issue 2 (2022) 14 https://doi.org/10.36922/gpd.v1i2.101

