Page 77 - GPD-1-2
P. 77

Gene & Protein in Disease                                   Recent advances and challenges of network biology



            22.  Langfelder P, Horvath S, 2008, WGCNA: An R package for   covariance estimation with the graphical lasso. Biostatistics,
               weighted correlation network analysis.  BMC Bioinformat,   9(3): 432–441.
               9(1): 559.
                                                                  https://doi.org/10.1093/biostatistics/kxm045
               https://doi.org/10.1186/1471-2105-9-559
                                                               35.  Cai T, Liu W, Luo X, 2011, A constrained ℓ1 minimization
            23.  Zhang B, Horvath S, 2005, A general framework for weighted   approach to sparse precision matrix estimation. J Amer Stat
               gene co-expression network analysis. Stat Appl Genet Mol   Assoc, 106(494): 594–607.
               Biol, 4(1): 17.
                                                                  https://doi.org/10.1198/jasa.2011.tm10155
               https://doi.org/10.2202/1544-6115.1128
                                                               36.  Young PM, Trevor H, 2007, Penalized logistic regression for
            24.  Lai Y, Wu B, Chen L, et al., 2004, A statistical method for   detecting gene interactions. Biostatistics, 9(1): 30–50.
               identifying differential gene-gene co-expression patterns.
               Bioinformatics, 20(17): 3146–3155.                 https://doi.org/10.1093/biostatistics/kxm010
                                                               37.  Roy GG, Geard N, Verspoor K,  et al., 2020, PoLoBag:
               https://doi.org/10.1093/bioinformatics/bth379
                                                                  Polynomial lasso bagging for signed gene regulatory
            25.  Van Dam S, Vosa U, van der Graaf A,  et  al., 2018, Gene   network inference from expression data.  Bioinformatics,
               co-expression analysis for functional classification and gene   36(21): 5187–5193.
               disease predictions. Brief Bioinformat, 19(4): 575–592.
                                                                  https://doi.org/10.1093/bioinformatics/btaa651
               https://doi.org/10.1093/bib/bbw139
                                                               38.  Duarte NC, Becker SA, Jamshidi N,  et al., 2007, Global
            26.  Wang P, Yang CL, Chen H,  et al., 2018, Exploring   reconstruction of the human metabolic network based
               transcription factors reveals crucial members and regulatory   on genomic and bibliomic data. Proc Natl Acad Sci U S A,
               networks  involved  in  different  abiotic  stresses  in  Brassica   104(6): 1777–1782.
               napus L. BMC Plant Biol, 18(1): 202.
                                                                  https://doi.org/10.1073/pnas.0610772104
               https://doi.org/10.1186/s12870-018-1417-z
                                                               39.  Wang Y, Joshi T, Xu D, et al., 2006, Inferring gene regulatory
            27.  Goh K, Cusick ME, Valle D, et al., 2007, The human disease   networks from multiple microarray datasets. Bioinformatics,
               network. Proc Natl Acad Sci U S A, 104(21): 8685–8690.   22(19): 2413–2420.
               https://doi.org/10.1073/pnas.0701361104            https://doi.org/10.1093/bioinformatics/btl396
            28.  Barabási  Al,  Gulbahce  N,  Loscalzo  J,  2011,  Network   40.  Finkle JD, Wu JJ, Bagheri N, 2018, Windowed granger causal
               medicine: A network-based approach to human disease. Nat   inference strategy improves discovery of gene regulatory
               Rev, 12(1): 56–68.                                 networks. Proc Natl Acad Sci U S A, 115(9): 2252–2257.
               https://doi.org/10.1038/nrg2918                    https://doi.org/10.1073/pnas.1710936115
            29.  Yıldırım MA, Goh K, Cusick ME, et al., 2007, Drug-target   41.  Wang YX, Huang H, 2014, Review on statistical methods for
               network. Nat Biotech, 25(10): 1119–1126.           gene network reconstruction using expression data. J Theor
               https://doi.org/10.1038/nbt1338                    Biol, 362: 53–61.
            30.  Gosak M, Markovic R, Dolensek J,  et  al., 2018, Network      https://doi.org/10.1016/j.jtbi.2014.03.040
               science of biological systems at different scales: A  review.   42.  Xu S, Zhang C, Wang P, et al., 2020, Variational bayesian
               Phys Life Rev, 24: 118–135.                        weighted complex network reconstruction.  Inform Sci,
               https://doi.org/10.1016/j.plrev.2017.11.003        521: 291–306.
            31.  Barabási AL, Oltvai Z, 2004, Network biology:      https://doi.org/10.1016/j.ins.2020.02.050
               Understanding the cell’s functional organization.  Nat  Rev   43.  Jeong H, Mason SP, Barabási AL, et al. 2001, Lethality and
               Genet, 5(2): 101–113.                              centrality in protein networks. Nature, 411(6833): 41–42.
               https://doi.ortg/10.1038/nrg1272                   https://doi.org/10.1038/35075138
            32.  Liu C, Ma YF, Zhao J, et al., 2020, Computational network   44.  Xu J, Li Y, 2006, Discovering disease-genes by topological
               biology: Data, models, and applications. Phys Rep, 846: 1–66.
                                                                  features in human protein-protein interaction network.
               https://doi.org/10.1016/j.physrep.2019.12.004      Bioinformatics, 22(22): 2800–2805.
            33.  Yuan M, Lin Y, 2007, Model selection and estimation in the      https://doi.org/10.1093/bioinformatics/btl467
               Gaussian graphical model. Biometrika, 94(1): 19–35.
                                                               45.  Wu X, Jiang R, Zhang MQ, et al., 2008, Network-based global
               https://doi.org/10.1016/j.jmva.2012.01.005         inference of human disease genes. Mol Syst Biol, 4(1): 189.
            34.  Friedman J, Hastie T, Tibshirani R, 2007, Sparse inverse      https://doi.org/10.1038/msb.2008.27



            Volume 1 Issue 2 (2022)                         11                     https://doi.org/10.36922/gpd.v1i2.101
   72   73   74   75   76   77   78   79   80   81   82