Page 133 - GPD-3-2
P. 133

Gene & Protein in Disease                                       Bioinformatics to identify gene signatures of CF



               designing potential peptide vaccine by targeting  Shigella      doi: 10.1186/1753-6561-3-s4-s10
               spp. Serine protease autotransporter subfamily protein siga.   33.  Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes
               J Immunol Res. 2017;2017:6412353.
                                                                  and genomes. Nucleic Acids Res. 2000;28(1):27-30.
               doi: 10.1155/2017/6412353
                                                                  doi: 10.1093/nar/28.1.27
            22.  Rahman  MR,  Islam  T,  Zaman  T,  et al.  Identification  of   34.  Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M.
               molecular signatures and pathways to identify novel   KEGG as a reference resource for gene and protein
               therapeutic targets in Alzheimer’s disease: Insights   annotation. Nucleic Acids Res. 2016;44(D1):D457-D462.
               from a systems biomedicine perspective.  Genomics.
               2020;112(2):1290-1299.                             doi: 10.1093/nar/gkv1070
               doi: 10.1016/j.ygeno.2019.07.018                35.  Zhang S, Bodenreider O. Law and order: Assessing and
                                                                  enforcing compliance with ontological modeling principles
            23.  Clough E, Barrett T. The gene expression omnibus database.
               Methods Mol Biol. 2016;1418:93-110.                in the Foundational Model of Anatomy. Comput Biol Med.
                                                                  2006;36(7-8):674-693.
               doi: 10.1007/978-1-4939-3578-9_5
                                                                  doi: 10.1016/j.compbiomed.2005.04.007
            24.  Ritchie ME, Phipson B, Wu D,  et al. Limma powers   36.  Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10:
               differential expression analyses for RNA-sequencing and   Protein-protein  interaction  networks,  integrated  over  the
               microarray studies. Nucleic Acids Res. 2015;73(7):e47.
                                                                  tree of life. Nucleic Acids Res. 2015;43(D1):D447-D452.
               doi: 10.1093/nar/gkv007
                                                                  doi: 10.1093/nar/gku1003
            25.  Benjamini BY, Yekutieli D. The control of the false discovery   37.  Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software
               rate  in  multiple  testing  under  dependency.  Ann Stat.   environment for integrated models of biomolecular
               2001;29(4):1165-1188.                              interaction networks. Genome Res. 2003;13:2498-2504.
            26.  Aubert J, Bar-Hen A, Daudin JJ, Robin S. Determination of      doi: 10.1101/gr.1239303
               the differentially expressed genes in microarray experiments
               using local FDR. BMC Bioinformatics. 2004;5:125.  38.  Hogue CW, Groll M. An automated method for finding
                                                                  molecular complexes in large protein interaction networks.
               doi: 10.1186/1471-2105-5-125                       BMC Bioinformatics. 2001;29(1):137-140.
            27.  Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A.      doi: 10.1093/nar/29.1.137
               False discovery rate, sensitivity and sample size for
               microarray studies. Bioinformatics. 2005;21(13):3017-3024.  39.  Chin CH, Chen SH, Wu HH, Ho CW, Ko MT,
                                                                  Lin  CY. cytoHubba: Identifying hub objects and sub-
               doi: 10.1093/bioinformatics/bti448                 networks from complex interactome.  BMC Syst Biol.
            28.  Islam MR, Ahmed ML, Kumar Paul B, Bhuiyan T, Ahmed K,   2014;8 Suppl 4(Suppl 4):S11.
               Moni MA. Identification of the core ontologies and signature      doi: 10.1186/1752-0509-8-S4-S11
               genes of polycystic ovary syndrome (PCOS): A bioinformatics
               analysis. Informatics Med Unlocked. 2020;18:100304.  40.  Wang G. Genome editing for cystic fibrosis.  Cells.
                                                                  2023;12(12):1555.
               doi: 10.1016/j.imu.2020.100304
                                                                  doi: 10.3390/cells12121555
            29.  Jiao X, Sherman BT, Huang DW,  et al. DAVID-WS:
               A stateful web service to facilitate gene/protein list analysis.   41.  Paterson SL, Barry PJ, Horsley AR. Tezacaftor and ivacaftor
               Bioinformatics. 2012;28(13):1805-1806.             for the treatment of cystic fibrosis. Expert Rev Respir Med.
                                                                  2020;14(1):15-30.
               doi: 10.1093/bioinformatics/bts251
                                                                  doi: 10.1080/17476348.2020.1682998
            30.  Xia J, Gill EE, Hancock REW. NetworkAnalyst for statistical,
               visual and network-based meta-analysis of gene expression   42.  Kotnala S, Dhasmana A, Kashyap VK, Chauhan SC,
               data. Nat Protoc. 2015;10(6):823-844.              Yallapu MM, Jaggi M. A  bird eye view on cystic fibrosis:
                                                                  An underestimated multifaceted chronic disorder. Life Sci.
               doi: 10.1038/nprot.2015.052                        2021;268:118959.
            31.  Ashburner M, Ball CA, Blake JA, et al. Gene ontology: Tool      doi: 10.1016/j.lfs.2020.118959
               for the unification of biology. Nat Genet. 2000;25:25-29.
                                                               43.  O’Neal WK, Knowles MR. Cystic fibrosis disease modifiers:
               doi: 10.1038/75556                                 Complex genetics defines the phenotypic diversity in
                                                                  a  monogenic  disease.  Annu Rev Genomics Hum Genet.
            32.  Hulsegge I, Kommadath A, Smits MA. Globaltest and
               GOEAST:  Two  different  approaches  for  Gene  Ontology   2018;19:201-222.
               analysis. BMC Proc. 2009;3(S4):S10.                doi: 10.1146/annurev-genom-083117-021329



            Volume 3 Issue 2 (2024)                         10                              doi: 10.36922/gpd.2937
   128   129   130   131   132   133   134   135   136   137   138