Page 134 - GPD-3-2
P. 134
Gene & Protein in Disease Bioinformatics to identify gene signatures of CF
44. Bienvenu T, Nguyen-Khoa T. Current and future diagnosis and biological functions. Epigenomics. 2014;6(1):139-150.
of cystic fibrosis: Performance and limitations. Arch Pédiatr. doi: 10.2217/epi.13.73
2020;27 Suppl 1:eS19-eS24.
55. Xie CM, Wei W, Sun Y. Role of SKP1-CUL1-F-box-protein
doi: 10.1016/S0929-693X(20)30046-4
(SCF) E3 ubiquitin ligases in skin cancer. J Genet Genomics.
45. Neutelings T, Lambert CA, Nusgens BV, Colige AC. Effects 2013;40(3):97-106.
of mild cold shock (25 C) followed by warming up at 37 C
on the cellular stress response. PLoS One. 2013;8(7):e69687. doi: 10.1016/j.jgg.2013.02.001
56. Li R, Xu F, Wu X, Ji S, Xia R. CUL1-mediated organelle
doi: 10.1371/journal.pone.0069687
fission pathway inhibits the development of chronic
46. Sit ST, Manser E. Rho GTPases and their role in organizing obstructive pulmonary disease. Comput Math Methods Med.
the actin cytoskeleton. J Cell Sci. 2011;124(5):679-683. 2020;2020:5390107.
doi: 10.1242/jcs.064964 doi: 10.1155/2020/5390107
47. Ferru-Clément R, Fresquet F, Norez C, et al. Involvement of 57. Roffel MP, Bracke KR, Heijink IH, Maes T. miR-223: A key
the Cdc42 pathway in CFTR post-translational turnover and regulator in the innate immune response in asthma and
in its plasma membrane stability in airway epithelial cells. COPD. Front Med (Lausanne). 2020;7:196.
PLoS One. 2015;10(3):e0118943.
doi: 10.3389/fmed.2020.00196
doi: 10.1371/journal.pone.0118943
58. Liu Q, Gao Y, Ci X. Role of Nrf2 and its activators in respiratory
48. Gundu C, Arruri VK, Yadav P, et al. Dynamin-Independent diseases. Oxid Med Cell Longev. 2019;2019:7090534.
Mechanisms of Endocytosis and Receptor Trafficking. Cells.
2022;11(16):2557. doi: 10.1155/2019/7090534
doi: 10.3390/cells11162557 59. Wei R, Chen G, Algehainy N, et al. RNase L is involved
in liposaccharide-induced lung inflammation. Viruses.
49. Ganeshan R, Nowotarski K, Di A, Nelson DJ, Kirk KL. CFTR 2020;12(1):73.
surface expression and chloride currents are decreased by
inhibitors of N-WASP and actin polymerization. Biochim doi: 10.3390/v12010073
Biophys Acta. 2007;1773(2):192-200. 60. Haque AA, Weinmann P, Biswas S, et al. RNA immunogenic
doi: 10.1016/j.bbamcr.2006.09.031 assay: Simple method for detecting immunogenicity
of in vitro transcribed mRNA. Adv Cell Gene Ther.
50. Jaganathan D, Bruscia EM, Kopp BT. Emerging concepts in 2020;3(2):1-10.
defective macrophage phagocytosis in cystic fibrosis. Int J
Mol Sci. 2022;23(14):7750. doi: 10.1002/acg2.79
doi: 10.3390/ijms23147750 61. Tian X, Chen Y, Peng Z, Lin Q, Sun A. NEDD4 E3 ubiquitin
ligases: Promising biomarkers and therapeutic targets for
51. Boyle MP. Strategies for identifying modifier genes in cystic cancer. Biochem Pharmacol. 2023;214:115641.
fibrosis. Proc Am Thorac Soc. 2007;4(1):52-57.
doi: 10.1016/j.bcp.2023.115641
doi: 10.1513/pats.200605-129JG
62. Song MS, Pandolfi PP. The HECT family of E3 ubiquitin
52. Barone S, Cassese E, Alfano AI, Brindisi M, Summa V. ligases and PTEN. Semin Cancer Biol. 2022;85:43-51.
Chasing a breath of fresh air in cystic fibrosis (CF):
Therapeutic potential of selective HDAC6 inhibitors to doi: 10.1016/j.semcancer.2021.06.012
tackle multiple pathways in CF pathophysiology. J Med 63. Chen H, Chew G, Devapragash N, et al. The E3 ubiquitin
Chem. 2022;65(4):3080-3097. ligase WWP2 regulates pro-fibrogenic monocyte infiltration
doi: 10.1021/acs.jmedchem.1c02067 and activity in heart fibrosis. Nat Commun. 2022;13(1):7375.
53. Yoon S, Kang G, Eom GH. Hdac inhibitors: Therapeutic doi: 10.1038/s41467-022-34971-6
potential in fibrosis-associated human diseases. Int J Mol Sci. 64. Chen H, Moreno-Moral A, Pesce F, et al. WWP2 regulates
2019;20(6):1329.
pathological cardiac fibrosis by modulating SMAD2
doi: 10.3390/ijms20061329 signaling. Nat Commun. 2019;10(1):3616.
54. Wang Z, Qin G, Zhao TC. HDAC4: Mechanism of regulation doi: 10.1038/s41467-019-11551-9
Volume 3 Issue 2 (2024) 11 doi: 10.36922/gpd.2937

